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AFIT/GOR/ENS/06-10 
 

Abstract 

 

  The first step in combating a chemical weapons threat is contamination 

avoidance.  This is accomplished by the detection and identification of chemical agents.  

The Air Force has several instruments to detect chemical vapors, but is always looking 

for lighter, faster, and more accurate technology for a better capability. 

  This research is focused on using carbon nanotube polymer composite sensors for 

chemical detection.  More specifically, models are developed to classify three sets of 

sensor data according to vapor using various multivariate techniques.  Also, prediction 

models of a mixed sensor output are developed using neural networks and regression 

analysis.  The classifiers developed are able to accurately classify three vapors for a 

specific set of data, but have problems when tested against data from aged sensors as well 

as data generated from a different set of new sensors.  These results indicate that further 

research should be conducted to ensure accuracy in identifying chemical vapors using 

these types of sensors. 
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CLASSIFICATION CHARACTERISTICS OF CARBON NANOTUBE POLYMER 

COMPOSITE CHEMICAL VAPOR DETECTORS 

 
 

1. Introduction 

1.1  Background 

 
 Chemicals have been used in warfare for centuries.  The earliest use of chemical 

gases against an enemy was seen during the Peloponnesian War when the Spartans 

gained control of an Athenian fort by directing smoke into it through “hollowed out” 

beams (Langford, 2004:211).  Ancient Chinese writings describe the use of smoke, from 

burning mustard and toxic vegetable matter, to deter an enemy (Langford, 2004:212).  

Chemical weapons use was also witnessed in World War I, where mustard gas caused 

more deaths than any other chemical agent (Langford, 2004:216).   

 After viewing the effects of such weapons, the international community placed a 

stigma on the use of chemical weapons in conflict.  In 1993, the Chemical Weapons 

Convention was opened for signature and has been signed by 186 countries, including the 

United States.  The organization established to monitor the progress of the Convention is 

the Organization for the Prohibition of Chemical Weapons (OPCW).  According to the 

OPCW:  

 The Convention prohibits all development, production, acquisition, 
stockpiling, transfer, and use of chemical weapons. It requires each State 
Party to destroy chemical weapons and chemical weapons production 
facilities it possesses, as well as any chemical weapons it may have 
abandoned on the territory of another State Party (OPCW, 2005). 



 

 2

 
There are 8 countries, including Egypt, North Korea, and Syria, that have not signed the 

Convention.   

 While there is progress in disarmament, open source intelligence indicates that 

over twenty countries have either chemical weapons programs or stockpiles.  The 

international community has taken a stand on this issue through the Convention, but it 

currently only addresses nation-states.  The problem with this is that waging war has 

changed since the days of the World Wars.  We are no longer fighting nation-states, but 

insurgents and international terrorist groups.  Now, when we go into combat, we are 

engaging with a sometimes unknown enemy that does not fight conventionally.  Terrorist 

groups have already shown their willingness to use chemical weapons to induce fear in a 

civilian population, as seen in the sarin attack on the Tokyo subway system in 1995.  If 

they are willing to attack civilians in this fashion, they will have no qualms about using 

this same method to harm our military forces. 

 Chemical weapons can be blood, choking, nerve, blister, tear, vomiting, or 

incapacitating agents.  They can be easily manufactured and specific chemicals, such as 

hydrogen cyanide and phosgene, can be purchased commercially.  Due to the 

proliferation of chemical weapons, it is inevitable that our forces will encounter them.  

Senior leaders have shown that they believe this to be a significant threat, as seen by their 

increase in budget for weapons of mass destruction (WMD) countermeasures by $2.1 

billion for FY06-11 (DoD, 2005).   

 The first step in battling the chemical weapons threat is “contamination 

avoidance” (DoD, 2005).  Contamination avoidance includes the ability to detect a 
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chemical agent and identify it.  This thesis focuses on chemical agent vapor detection.  

The military has several devices that it currently uses to accomplish this.  The Chemical 

Agent Monitor (CAM), Improved Chemical Agent Monitor (ICAM), Automatic 

Chemical Agent Detection Alarm (ACADA), HAPSITE, MINICAMS, TVA-1000, and 

various colorimetric devices are the current fielded capabilities.  A device called the Joint 

Chemical Agent Detector (JCAD) was developed to provide a handheld detection 

capability to the warfighter and the Joint NBC Reconnaissance System (JNBCRS) was 

developed to provide reconnaissance in areas where NBC employment is suspected.  

These technologies will be fully discussed in Chapter 2. 

 An emerging technology that could also be used to address this issue is the use of 

carbon nanotube polymer composite sensors for detection.  Their small size, low power 

consumption, and low cost make them a good option for research and development in this 

area.  Figure 1 shows examples of how this technology could be potentially employed. 

UAV

Mobile PlatformHand-held Detector

UAVUAV

Mobile PlatformMobile PlatformHand-held DetectorHand-held Detector  
Figure 1.  Potential carbon nanotube polymer composite sensor detector platforms (AFRL, 2005). 

 
 This research focuses on carbon nanotube polymer composite sensors, more 

specifically, identifying classifiers that will discriminate between different chemicals.  

The result is a study into whether this technology is a viable option for detecting and 

identifying chemical vapors. 
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1.2 Research Problem  

  
 While the Air Force has several capabilities available for chemical vapor 

detection, it continues to search for faster, lighter, and lower cost alternatives that provide 

better accuracy in the field.  This thesis considered carbon nanotube polymer composite 

sensor technology as a possible alternative. 

 

1.3 Research Objective 

 The objective of this thesis was to take existing sensor data for a number of 

chemicals that have interacted with different polymer sensors and develop algorithms to 

identify the chemical.  The data was also used to investigate whether individual polymer 

sensor data sets can be used to predict the behavior of a mixed polymer sensor.  Several 

multivariate analysis techniques, such as discriminant/classification analysis, neural 

networks, and regression analysis were considered.         

 

1.4 Overview 

 Chapter 2 provides a literature review discussing current Air Force capabilities 

and previous research on the chemical detection capability of carbon nanotube polymer 

composite sensors.  Chapter 3 discusses the methods used to classify and analyze the 

sensor data, while Chapter 4 provides the numerical analysis and results of the study.  

Chapter 5 presents the conclusion of the study, how this research is relevant to the Air 

Force, and recommendations for further research. 
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2. Literature Review 

 
 

 This chapter presents a literature review that focuses on chemical vapor detection 

technologies and multivariate analysis techniques.  Section 2.1 focuses on the 

technologies currently being used or developed by the U.S. Air Force (USAF).  Section 

2.2 includes information on carbon nanotube polymer composite detectors and previous 

research into their chemical detection capability.  Section 2.3 reviews discriminant 

analysis, Section 2.4 neural network techniques, and Section 2.5 regression analysis, and 

how they can be used to identify different chemicals.   

 

2.1 Current and Developing Military Technology for Chemical Vapor Detection 

 
 Current detection devices are bulky and subject to false readings.  Also, most do 

not provide information on the concentration of a detected chemical agent.  Developing 

technology has attempted to resolve these issues, but several difficulties continue to exist. 

 

2.1.1 Current Fielded Capability 
 
 The U.S. Air Force (USAF) currently uses the following technologies for 

chemical vapor detection: colorimetry, ion mobility spectrometry (IMS), gas 

chromatography with mass spectrometry (GC/MS), and photoionization/flame ionization. 

Colorimetric sensors consist of litmus paper, or color spot, tests.  This is the least 

expensive method, although rather slow for early warning detection, taking about 15-20 



 

 6

minutes to detect various agents (Hill and Martin, 2002:2283).  These sensors are also 

lightweight and easy to use.  They detect chemicals through the reaction of reagents, 

impregnated on the paper sensor, with the air.  When a chemical agent is present, the 

reagent and chemical react and change the color of the paper.  Since different reagents 

react to specific chemicals, a different sensor is required for each chemical to be detected.  

This is the main disadvantage of this technology, but it is also an advantage due to less 

false positives.  The detector requires the human eye to act as the “signal (color) 

processor” (Sun and Ong, 2005:198).  The problem with this is that each person’s eye has 

a different sensitivity to color and some people have a degree of colorblindness (Sun and 

Ong, 2005:198).  In addition, environmental factors, such as dim or bright light can 

inhibit the effectiveness of the sensor (Sun and Ong, 2005:198).  This is why colorimetric 

detectors can, at best, be used for qualitative or semiqualitative analysis (Sun and Ong, 

2005:198).   

 The current colorimetric detectors in use for vapor detection are the M256A1 Kit 

and the Draeger Civil Defense Simultest (CDS) Kit.  The M256A1 Kit consists of M8 

paper for liquid detection and M256A1 sampler detectors for vapor detection (DAF, 

2003:43).  The sampler detectors have pretreated test spots capable of detecting blister, 

blood, and nerve agents (DoD, 1999).  There are two ampoules, filled with reagent, 

connected to each test spot via channels.  When testing, the ampoules are broken and the 

reagents run down the channels to the pretreated test spots.  The presence or absence of 

chemical agents can be seen by changes to the color of the test spots (DoD, 2005:A5).   

The Draeger CDS Kit consists of a pump and two sets of detector tubes (Draeger, 

2005).  The pump is connected to the test sets and used to draw air into them.  Each set 



 

 7

contains “five different specially designed and calibrated detector tubes” (Drager, 2005).  

Specific color changes in the tubes will identify the presence of a chemical agent.  The kit 

can detect nerve, blood, blister, and choking agents.   

 In IMS, ions are separated based on their drift velocity through an electric field 

(Sun and Ong, 2005:113).  This detection process consists of “sample introduction, 

ionization, ionic drift, collision and diffusion, ion collection, and signal generation” (Sun 

and Ong, 2005:114).  An IMS device usually contains a weak radioactive source to ionize 

a vapor sample once it has entered the system (Sun and Ong, 2005:118).  These ions then 

enter the “drift region” where they move through an electric field.  The time it takes them 

to move through the drift region depends on their shape, mass, and charge (Sun and Ong, 

2005:113).  While in the drift tube, ions collide with other molecules in the drift flow, 

which is opposite the ion flow.  These collisions slow them down, but they are once again 

accelerated by the electric field gradient.  Ions also undergo diffusion which causes the 

ions to disperse while in the drift tube.  The ions eventually reach the ion collector where 

they lose their charges and a drift time is recorded.  The drift time is the time it takes an 

ion to get to the ion collector after it has entered the drift region (Sun and Ong, 

2005:121).  At this time, an electrical current is generated, which is processed into a 

“signature” that correlates to the specific relative drift time (Sun and Ong, 2005:121).  

The detector compares this information to target information stored in its library and if it 

matches a target, an alarm is generated signifying detection of a chemical agent (Sun and 

Ong, 2005:115). 

 The advantages of IMS technology are that it can detect a chemical agent within 

seconds and at concentration levels as low as parts-per-billion (ppb) (Sun and Ong, 
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2005:113).  It also can detect and identify many different vapors, even those not targeted, 

which can be a disadvantage due to false alarms (Sun and Ong, 2005:122).  In addition, 

IMS devices can be small and lightweight, easy to operate since the microprocessor does 

most of the analysis, and purchased at low cost (Prelas and Ghosh, 2002:384). 

 Current IMS devices used by the USAF are the Chemical Agent Monitor (CAM), 

Improved Chemical Agent Monitor (ICAM), and Automatic Chemical Agent Detection 

Alarm (ACADA).  The CAM and ICAM are both handheld devices that can detect and 

identify specific classes of nerve and blister agents, but ICAM is “300% more reliable, 

starts up 10 times faster, and the modular design is much less expensive to repair” (DoD, 

2005:A2).  ACADA is a man-portable system that can detect and identify all nerve 

agents, mustard, and lewisite (DoD, 2005:A7).  It provides simultaneous detection of 

nerve and blister agents and can operate independently after start-up (JPEO-CBD, 2005).   

 GC/MS technology “uses a gas chromatograph to separate the materials in a 

sample into relatively pure chemical compounds, and then uses the mass spectrometer to 

identify the specific substance” (Langford, 2004:296).  After the material is separated 

into different components by the GC, it will be ionized by an electron beam in the MS 

(EPA, 1998:iv).  The ions are then subjected to an electric or magnetic field where they 

are further separated by mass (Langford, 2004:296).  The resulting mass spectrum 

“serves as a molecular fingerprint that identifies the structure of the compound” 

(Langford, 2004:296).  This technology allows for quick detection of chemical agents in 

the ppb to ppm range. 

 The HAPSITE Chemical Detection System is a portable GC/MS that is used by 

USAF.  An agent is identified by its GC retention time and the comparison of its mass 
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spectrum to a target compound library (EPA, 1998:6). The HAPSITE can detect, identify, 

and quantify chemical agents in the ppb to ppm range, but the cost of the device is in the 

tens of thousands and operational costs are hundreds of dollars a day (EPA, 1998:iv). 

 Another device used by the AF is the MINICAMS, which is a near real-time gas 

chromatography system.  It operates by alternating between sampling, when air is pulled 

into the system, and analysis, when nitrogen is forced through the system to send 

captured analytes to the capillary column for separation (Utah, 1996:1).  The separated 

analytes are then sent to the detector where the signal is analyzed to identify and quantify 

the chemical present (Utah, 1996:1).  This process takes approximately three to ten 

minutes depending on system configuration (Utah, 1996:1).  The MINICAMS can detect 

all nerve agents and specific blister agents in the ppb to ppm range (MINICAMS, 2006). 

  Lastly, photoionization/flame ionization detectors (PID/FID) identify the presence 

of a chemical agent by measuring the current generated by an ionized molecule (Sun and 

Ong, 2005:209).  The difference in the two techniques is how they ionize the molecules.  

Photoionization does this through ultraviolet (UV) radiation, while flame ionization uses 

a hydrogen flame to burn molecules and produce ions (Sun and Ong, 2005:209).  In both 

methods, the ions are subjected to an electrical field which forces them toward electrodes, 

where the ions release their charges on contact (Sun and Ong, 2005:209).  This produces 

an electric current that is proportional to the amount of substance that enters the detector 

(Sun and Ong, 2005:212).    

The USAF uses a dual PID/FID system called the TVA-1000 produced by the 

Foxboro Company.  This equipment is used for gas survey monitoring through the 

sampling and measurement of the concentration of known gases.  Before use, it must first 
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be calibrated to the gas being measured (Foxboro, 1995).  If the gas to be measured is 

different than the gas used to calibrate the system, a response factor must be used to 

calculate an accurate concentration reading (Foxboro, 1995).  The disadvantage of this 

system is that it does not identify unknown gases, although a user can get an idea of what 

type of gas is being detected based on the different readings from the PID and FID 

(Foxboro, 1995). 

 

2.1.2 Developing Capability 
  

The Air Force has developed a sensor that makes use of Surface Acoustic Wave 

(SAW) technology.  A piezoelectric plate is central to SAW technology.  An electric field 

is applied to one end of the plate, which generates an acoustic wave on the surface of the 

plate (Hill and Martin, 2002:2282).  The wave is detected at the other end of the plate and 

measured by the electric voltage it produces (Hill and Martin, 2002:2282).  The plate 

itself is not capable of attracting chemicals to its surface, so a thin polymer film provides 

sorption sites for chemical agents (Sun and Ong, 2005:178).  When a chemical sorbs onto 

the plate’s surface, the acoustic wave’s amplitude and phase changes (Hill and Martin, 

2002:2282).  This change is used to determine the amount of chemical deposited on the 

sensor.  A detector can have several sensors, each with a different polymer on its surface.  

Each sensor will have a different response when exposed to a vapor.  The chemical can 

be identified based on the response pattern generated from all the sensors (Sun and Ong, 

2005:185).  When a pattern matches one stored in the detector, the device will indicate 

the presence of a chemical agent (Sun and Ong, 2005:182).  The SAW device is then 
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subjected to flash heat, so the sorbed chemicals can be released and the process can start 

again (Sun and Ong, 2005:182).  

The major advantages of this technology are that it can be made “small and 

portable” (Hill and Martin, 2002:2283), manufactured at low cost, and is able to detect 

chemicals at the ppb level (Sun and Ong, 2005:187).  It is also very fast, developing a 

response to a detected chemical vapor within seconds (Sun and Ong, 2005:187). 

A device developed that uses SAW technology is the Joint Chemical Agent 

Detector (JCAD).  This detector uses a chemical sensor array made up of specific 

polymers that detect nerve, blister, and blood agent vapors (Laljer, 2005:5).  It then uses a 

neural network algorithm to identify and quantify the detected agent (Laljer, 2005:5).  

When new chemical agents are discovered, the neural network algorithm can be updated 

with the new information to increase detection capability (Laljer, 2005:5).  

 Another new system, the Joint NBC Reconnaissance System (JNBCRS), is 

expected to be fielded in FY06.  The JNBCRS detects chemical, as well as biological, 

radiological, and nuclear hazards and requires 3 people to operate: a driver, sensor 

operator, and surveyor (AFCESA, 2006).  It is to be fielded as a reconnaissance system in 

areas where NBC weapons and toxic chemicals are suspected to have been employed 

(MCTSSA, 2006).  The system currently carries the ACADA for chemical detection 

(Huber, 2006).  The disadvantages of the JNBCRS are size and cost: a large vehicle is 

required and is costs have been quoted at approximately $900K per system and $138K 

for annual sustainment (AFCESA, 2006). 
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2.2 Carbon Nanotube Polymer Composite Sensors 

 
 Carbon nanotubes are “rolled up sheets of carbon atoms” (Nanotube, 2005).  They 

were discovered in 1991 when Sumio Iijima was studying the deposits on a graphite 

cathode after arc evaporation (Harris, 1999:4).  Since then, they have been involved in 

various research in several fields from physics to material science.  Research in their use 

for chemical detection has been conducted since the early 2000s and continues today in 

various forms.  Their unique electrical properties and high sensitivity allow them to 

detect gases and volatile organic compounds (Carbon, 2005).   

 Before delving into research concerning carbon nanotubes, another form of 

carbon must be discussed due to its contribution to chemical detection research.  Carbon 

black is a form of carbon that is produced when materials containing carbon, such as oil 

or gas, are not burned completely due to lack of oxygen during the combustion process.  

Early research conducted with carbon black organic polymer sensors provided evidence 

that they had the potential to detect, identify, and quantify different organic vapors.   

Research from Lonergan and associates showed that carbon black sensors could 

resolve common organic solvents.  Their tests included taking “thin films of carbon black 

organic polymer composites” and placing them across two metallic leads to produce 

individual sensors (Lonergan et al., 1996:2298).  Sensor arrays were constructed by using 

sensors made up of several different organic polymers to provide as much chemical 

diversity as possible.  The carbon black supplied the electrical conductivity while the 

organic polymer provided the diversity to allow for detected chemical classification 

(Lonergan et al., 1996:2299).  When a sensor was exposed to a vapor, the polymer would 

swell causing a change in resistance, but most interesting were the patterns in resistance 
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change created by different vapors (Lonergan et al., 1996:2298).  These patterns led to a 

fingerprint for each chemical that would allow for definitive classification and 

identification (Lonergan et al., 1996:2298).  Before analysis, the team “normalized and 

autoscaled” the data (Lonergan et al., 1996:2305).  The data was first normalized to 

correct for the differences in concentrations between exposures by calculating Sij, the 

normalized signal 

 ,max ,maxij ij ij
j

S R R= Δ Δ∑  (1) 

where max,ijRΔ  is the maximum differential resistance change for the jth sensor to the ith 

exposure (Lonergan et al., 1996:2305).  The normalized data was then autoscaled to 

account for the “differences in the dynamic ranges of the sensors” (Lonergan et al., 

1996:2305).  This resulted in features dij defined by 

 ( )jij ij jd S S σ= −  (2) 

where jS  and jσ  are the mean and standard deviation of the normalized responses 

(Lonergan et al., 1996:2305).  The features were then analyzed using principal 

component analysis demonstrating that the sensors could effectively distinguish between 

different chemicals and their concentrations, as seen in Figure 2 (Lonergan et al., 

1996:2307).   Neural networks were identified as another possible option for 

differentiating the data.  
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Figure 2.  Results from the exposure of the 17-element array to nine solvents as represented in the 

third, fourth, and fifth dimensions of principal component space (Lonergan et al., 1996:2305). 
 

Further research in 1998 focused on the sensor arrays and how they could be 

modified for better detection.  Doleman and his team studied three areas (Doleman et al., 

1998:4178):  

- What vapors were not well-resolved by specific detector arrays, allowing for 
the change of array components to improve performance 

 
- Optimal number of detectors needed in an array for the best performance in a 

specific task 
 

- Performance of various types of detectors (bulk organic conducting polymers 
vs. carbon black polymer composites vs. tin oxide detectors) 

 

Using the Fisher discriminant method, they found that the carbon black polymer 

composite type sensors performed best for the specific vapors tested and that for an 

unknown task, increasing the number of different detectors in the array will increase the 

array’s ability to distinguish between different analytes (Doleman et al., 1998:4190). 

Hopkins and Lewis also conducted tests using carbon black organic polymer 

composite sensors.  They tested against the nerve agent simulants 

dimethylmethylphosphonate (DMMP) and diisopropylmethylphosponate (DIMP).  
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DMMP is considered a simulant for sarin and DIMP a simulant for soman (Hopkins and 

Lewis, 2001:887).  Hopkins and Lewis found that the sensors could differentiate between 

these agents and other background analytes (benzene, toluene, diesel fuel, etc.) at limits 

of detection lower than the EC50 value for the nerve agents sarin and soman (Hopkins and 

Lewis, 2001:884).  (EC50 is the concentration that would cause severe effects in 50% of a 

population exposed to the agents for 30 minutes.)  They showed this was possible by 

performing principal component analysis, shown in Figure 3, as well as analyzing the 

data by pairs using Fisher linear discriminant analysis (Hopkins and Lewis, 2001:887).  

 

Figure 3.  Data in principal component space of ΔR/Rb values produced when an eight-detector 
carbon black/polymer composite array was exposed to DMMP, DIMP, THF, benzene, methanol, 

toluene, water, lighter fluid, vinegar, or diesel fuel in an air background (Hopkins and Lewis, 
2001:888). 

 
Additionally, the Jet Propulsion Laboratory at the California Institute of 

Technology developed an electronic nose (ENose) using polymer-carbon black 

composite sensors to identify and quantify target compounds in the recycled air of 

spacecraft (Ryan et al., 2004:714).  The ENose was composed of a 32-element sensor 
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array with polymers chosen that could detect a set of specific compounds at exposure 

levels set by the National Aeronautics and Space Administration (NASA) (Ryan et al., 

2004:714).  The first-generation ENose used an algorithm based on Levenburg-Marquart 

nonlinear least-squares fitting to identify and quantify chemicals with a success rate of 

85% for a single gas event (Ryan et al., 2004:719).  This system was successfully tested 

on a space shuttle mission in 1998, but research has continued on optimizing the sensors 

and sensor array, as well as developing models to identify compounds the sensing arrays 

have not been trained for (Ryan et al., 2004:719). 

In early 2000, the idea of using carbon nanotubes for chemical detection was 

introduced.  Kong and associates showed that sensors composed of individual single-

walled carbon nanotubes (SWNTs) could detect specific gases.  Once exposed to nitrogen 

dioxide (NO2) or ammonia (NH3), the electrical resistance of the SWNT either 

dramatically increased, Figure 4a, or decreased, Figure 4b (Kong et al., 2000:622). 

a)    b)  
Figure 4.  Electrical resistance of a semiconducting SWNT to gas molecules. (a) Conductance versus 

time in a 200-ppm flow.  (b) Conductance versus time recorded with the same SWNT in a flow of 
argon (Ar) containing 1% NH3 (Kong et al., 2000:624). 

 
 Shortly after, in 2003, a sensor platform that consisted of a network of SWNTs on 

interdigited electrodes (IDE) was developed for the detection of gases and organic vapors 

(Li et al., 2003:929).  The sensors were exposed to NO2 and nitrotoluene at different 
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concentrations resulting in noticeable changes in resistance.  Because these responses 

were linearly dependent on the concentrations, the detection limit of the sensors for each 

vapor was easily calculated by extrapolating the linear calibration curve to the point 

where the sensor response is considered to be the true signal, or when the signal equals 

three times the noise, shown in Figure 5 (Li et al., 2003:932).  These sensors were found 

to be able to detect NO2 and nitrotoluene to the ppb level (Li et al., 2003:932). 

 
Figure 5.  Calibration curve for nitrotoluene (Li et al., 2003:931). 

 
Most recently, perpendicularly aligned carbon nanotube arrays have shown their 

worth as sensing materials.  Wei and associates developed the sensors by dropping a 

polymer solution along the tube length of the aligned multiwall carbon nanotubes, as 

shown in Figure 6a (I) (Wei et al., 2006).  The nanotube polymer composite film was 

then inverted (Figure 6a (II)) and gold electrodes were placed across the nanotube arrays 

(Figure 6a (III)) (Wei et al., 2006).  The devices were then used to detect chemical vapors 

“through monitoring conductivity changes (Figure 6b) caused by charge-transfer 

interaction with gas molecules and/or inter-tube distance change induced by polymer 

swelling via gas adsorption” (Wei et al., 2006).  Experiments conducted with these 
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sensors showed that when exposed to various chemical vapors resistance changes 

occurred.  The data from these tests were used for the classification studies in this thesis. 

 
Figure 6.  Schematic illustration of the procedures for (a) fabricating and (b) characterizing the 

aligned carbon nanotube-polymer composite chemical vapor sensor (Wei et al., 2006). 
 

  

2.3 Discriminant Analysis 

 
 Discriminant Analysis is a technique for differentiating between individual 

observations based on their features.  This is accomplished by developing a mathematical 

function and applying it to the features to separate the observations into mutually 

exclusive and exhaustive groups (Bauer, 2005a:58).  The function assigns a score to each 

observation, so that each score (Bauer, 2005a:58) 

- is a linear combination of the observation’s attributes 

- has average scores from the two groups as far apart as possible 
 
- has a variance as small as possible   
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For the discrimination of two groups, A and B, a discriminant function Y is used 

to separate the groups.  The discriminant score, Y, for each observation is calculated by 

multiplying the discriminant weight, b, by the observation’s value on each independent 

variable, X1 and X2: Y = b’X, where Y is a 1 x n vector of discriminant scores, b’ is a 1 x 

p vector of discriminant weights, and X is a p x n matrix containing the values for each of 

the n observations on the p independent variables (Dillon and Goldstein, 1984:361).  

Figure 7 shows a scatterplot of groups A, denoted by the dots, and B, denoted by the 

circles (Dillon and Goldstein, 1984:362).  The straight line through the ellipses represents 

the smallest overlap between the univariate distributions A’ and B’ on the discriminant 

function graph (Dillon and Goldstein, 1984:362). 

 
Figure 7.  Graphical illustration of two-group discriminant analysis (Dillon and Goldstein, 1984:361). 
   
The classification rules that allow the function to distinguish between groups are 

developed from a training set of data in which their groupings are known.  This data is 

examined for differences and rules are developed so as to minimize misclassification 

(Johnson and Wichern, 2002:583). 
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2.3.1 Discriminant Analysis Methodology 
 
 There are several methods that can be used in discriminant analysis.  For most 

methods, the populations are assumed to be multivariate normal.  To test whether a data 

set originated from a multivariate normal population, each variable can be tested 

separately for univariate normality because if one variable is not normal, the entire vector 

is not multivariate normal (Rencher, 2002:92).  Although this should not be the only 

approach since the normality of the individual variables does not ensure joint normality 

(Rencher, 2002:92).   

The assumption of univariate normality can be tested by first putting the data in 

order according to magnitude, x(1) ≤ x(2) ≤ … ≤ x(n).  Next, the probability levels (p) for 

the jth observation and the corresponding standard normal quantiles (q) can be calculated 

by (Johnson and Wichern, 2002:179): 

 ( ) ( )

1
2

j j

j
P Z q p

n

−
⎡ ⎤≤ = =⎣ ⎦  (3) 

where n is the total number of observations.  The ordered data x(j) and the normal 

quantiles q(j) can then be plotted on a Q-Q plot and the “straightness” of the resulting plot 

should be examined.  This can be measured by calculating the correlation coefficient, rQ, 

of all points in the Q-Q plot (Johnson and Wichern, 2002:182): 
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If rQ is less than the appropriate level of significance, α, we can reject the hypothesis of 

normality (Johnson and Wichern, 2002:182). 

 Testing multivariate normality is not as straightforward as testing univariate 

normality.  If the sample is not large enough, it may not provide a good estimate of the 

actual distribution of the population (Rencher, 2002:97).  Also, these tests may not be 

very powerful due to the sparseness of the data in space (Rencher, 2002:97). 

 One method that can be used to test multivariate normality is to calculate the 

standardized distance from each jx  to x  (Rencher, 2002:97; Johnson and Wichern, 

2002:187): 

 ( ) ( )2 1
j j jd −′= − −x x S x x  (5) 

If the data is multivariate normal, then 
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−
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has a beta distribution (Rencher, 2002:97).  A Q-Q plot can also be constructed in this 

method, but the ui values will instead be ranked in ascending order u(1) ≤ u(2) ≤ … ≤ u(n) 

and plotted against the quantiles vi  
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If the Q-Q plot has a nonlinear pattern, it is an indication that the data is not multivariate 

normal. 

 Once multivariate normality is established, it is necessary to determine whether 

the population covariance matrices are homogeneous.  The covariance matrices (S) of 

each group should be calculated using (Bauer, 2005a:42): 

 1 1 11
1

S X X X X
N N

⎛ ⎞′ ′ ′= −⎜ ⎟− ⎝ ⎠
 (10) 

where N is the number of observations and X  is the data matrix.  These covariance 

matrices can then be tested for equality using Box’s M-test.  The hypothesis of all 

covariances being equal is tested by calculating (Rencher, 2002:257): 

 12(1 ) lnu c M= − −  (11) 
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where v = n – 1, p is the number of features in the covariance matrix, k is the number of 

groups to be separated, vi is v of the ith sample, Si is the covariance matrix of the ith 

sample, and Spl is the pooled sample covariance matrix (Rencher, 2002:256) 
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If u > 2
αχ , we can reject the hypothesis of all covariances being equal.   
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 If the covariance matrices are equal, Fisher’s Discriminant Function can be used 

to classify the data (Johnson and Wichern, 2002:609).  The population does not need to 

be multivariate normal to use this method.  Fisher’s discriminant function finds a linear 

combination of the characteristics of a population so that the difference in means is 

maximized and the variance is minimized (Dillon and Goldstein, 1984:364).  The linear 

combination in Equation 15 meets these requirements (Johnson and Wichern, 2002:610) 

 ( ) 1
1 2ˆ pooledy −

′
= −x x S x  (15) 

where Spooled is the pooled sample covariance matrix.  The midpoint of the maximal 

separation between the two populations 1
1 2 1 2

1ˆ ( ) ( )
2 pooledm −′= − +x x S x x  is used as the rule 

to classify new observations (Johnson and Wichern, 2002:611).   

 If the covariance matrices are not equal, quadratic discrimination scores should be 

calculated to identify classification rules.  “Quadratic discriminant scores (Dq scores) are 

an approximation of the natural log of the likelihood estimators (Young, 2002:28)”.  The 

Dq scores are calculated using (Johnson and Wichern, 2002:617): 

 11 1( ) ln | | ( ) ' ( )
2 2

Q
i i i i id −= − − − −x S x x S x x  (16) 

where ix  is the sample mean vector and iS is the sample covariance matrix.  Once the 

discriminant scores are calculated for each individual, the highest Dq score will determine 

which group the individual should be classified in.   

After classification is accomplished, a confusion matrix can be created for n1 

observations from π1 and n2 observations from π2 in the form (Johnson and Wichern, 

2002:601) 
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Predicted membership 

 π1 π2 

π1 N1C N1M 

π2 N2M N2C 

where 

N1C = number of π1 items correctly classified as π1 items 
N1M = number of π1 items misclassified as π2 items 

N2C = number of π2 items correctly classified as π2 items 
N2M = number of π2 items misclassified as π1 items 

 
From the confusion matrix, the apparent error rate (APER) can be easily calculated 

 1 2

1 2

APER M MN N
n n
+

=
+

 (17) 

The APER is based on the training set and therefore tends to underestimate the Actual 

Error Rate (AER) (Bauer, 2005a:85).  To find a better estimate, the total sample is 

usually split into a training sample and a validation sample leading to separate confusion 

matrices (Johnson and Wichern, 2002:602).  The training sample is used to construct the 

discriminant function while the validation data is used to evaluate it (Johnson and 

Wichern, 2002:602).  

 

2.4 Artificial Neural Networks 

 
 Artificial Neural Networks (ANNs) are another method for classifying data.  This 

technique was developed when scientists attempted to imitate the simple neuron 

functions that occur in the brain.  A neuron, Figure 8, consists of a nucleus, dendrites that 

carry signals to the nucleus, and axons which carry signals away (Nelson and Illingworth, 

1991:37).  A synapse is the point where a neuron passes an impulse to another neuron, 

Actual 
membership 
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which allows for a “network” of communication throughout the brain.  When a neuron 

receives an input, the input is “weighted” to either excite or inhibit the neuron to forward 

the signal (Nelson and Illingworth, 1991:39).  Once the sum of the weighted inputs 

reaches a certain level, the neuron fires its output.  This process is modeled in an ANN, 

which is “trained” to produce a specific output through the adjustment of the weights and 

network architecture. 

 
Figure 8.  Biological neuron (Bauer, 2005b:1). 

 
 

2.4.1 Artificial Neural Networks Definitions 
 

The following are definitions of terms normally used when discussing ANNs 

(Bauer, 2005b:3): 

- Artificial Neural Networks (ANN).  An information processing system 
(algorithm) that operates on inputs to extract information and produces 
outputs corresponding to the extracted information. 

 
- Architecture.  The topological arrangements of neurons, layers, and 

connections which define the set of modeling equations available to the ANN. 
 



 

 26

- Backpropagation.  A learning algorithm for updating weights in a feed-
forward multilayer perceptron (MLP) ANN that minimizes the mean squared 
mapping error. 

 
- Epoch.  A complete presentation of the data set being used to train the MLP, 

or equivalently called a training cycle. 
 

- Feature.  In neural networks, features refer to the input vectors of information 
which are presumed to have some relation that might be helpful in 
distinguishing the various output classes.  The vector of features is often 
called an Exemplar. 

 
- Feed-forward Neural Networks.  Multilayer ANNs whose connections 

exclusively feed inputs from lower to higher levels.  In contrast to a feedback 
or recurrent ANN, a feed-forward ANN operates only until all the inputs 
propagate to the output layer.  An example of a feed-forward ANN is the 
MLP. 

 
- Hidden Units.  The processing elements in MLP ANNs that are not included 

in the input or output layers.  This is the part of the neural network located 
between the input and output layers. 

 
- Neuron.  The fundamental building block of an ANN.  Normally, each neuron 

takes a weighted sum of its inputs to determine its net input.  The net is then 
processed through its transfer function to produce a single valued output that 
is broadcast to “downstream” neurons. 

 
- Training.  The iterative process of updating the weights of each node to better 

fit the data.   
 

- Weight: The values, associated with each connection, which signify its 
strength.  The weights are combined to calculate the activations. 

 
 

2.4.2 Artificial Neural Networks Paradigms 
 
 In the 1940s, the first neural network model was developed by Warren McCulloch 

and Walter Pitts.  Their model, though, did not include the weighting of the inputs to the 

neuron.  This was corrected in the 1950s when Frank Rosenblatt introduced the first 

perceptron model, Figure 9.  This model was made up of three layers: sensory, 
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association, and response (Smith, 1996:4).  The sensory layer was connected to the 

association layer and the association layer to the response layer in a random manner 

(Smith, 1996:4).  The response neuron with the strongest input would inhibit the other 

neurons and therefore provide the output for the network (Smith, 1996:5).  The model 

was successful at “learning”, but could only classify data correctly if it was linearly 

separable (Nelson and Illingworth, 1991:116). 

 
Figure 9.  Rosenblatt's perceptron 

 
 Rosenblatt’s Perceptron had a significant impact despite its problems.  Several 

other models followed his, which led to the feedforward multilayer perceptron (MLP) in 

Figure 10.  The output from one layer is fed forward to activate the next layer. 

 
Figure 10.  MLP ANN with bias 
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 The first layer of the MLP is the input layer where the data is applied to the 

network.  The last layer is the final output of the network.  Between these two layers, 

there are hidden nodes.  This research will include only one layer of hidden nodes in the 

network.  The bias nodes, with values between zero and one, may be used to further 

inhibit the activity of certain neurons (Schalkoff, 1997:86).    

The following equation describes the output for the nth exemplar (zn) of the MLP 

ANN above (Bauer, 2005b:15): 

 th 2 1
,

1
 neural network output =
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n

k j k j
j

k z f w x
=

⎛ ⎞
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⎝ ⎠
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where 

- J is the number of hidden nodes 

- f(a) = 1/(1+e-a) for sigmoidal activation functions 

- f(a) = a for linear activation functions 

- 2
,kjw is the weight from the hidden node j to output node k 

- 1
0x  is the hidden layer bias term 

- ⎟
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1
,

1 is the output of hidden node j 

- M is the number of input features 

- 1
, jiw is the weight from input node I to hidden node j 

- nx0  is the input layer bias term and is set equal to 1 

- n
ix  is the ith input feature of the nth input vector 
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 For the MLP to be useful, it must be able to learn patterns.  Training algorithms 

such as the backwards propagation of errors method, or backpropagation, can accomplish 

this.  Introduced in the mid-80s, it calculates the difference between the network output 

and the desired output and adjusts the weights of the neurons so as to minimize error.  

The instantaneous backpropagation algorithm for a single hidden layer feedforward 

network follows (Bauer, 2005b:19): 

1.  Randomly partition data into training, training-test, and validation sets. 

2.  Normalize the feature input data. 

3.  Initialize weights to small random values. 

4.  Present the network with a randomly selected vector from the training set, 
denoted xn. 

 
5.  Calculate the network output zn associated with the nth training vector. 

6.  Update the weights. 

7.  If the training-test set error does not indicate sufficient convergence, go to Step 
4.  

 
 Overfitting is training the data too closely and can become a problem while 

training an ANN.  The problem is that it models the noise along with the actual 

population (Smith, 1996:113).  This can be prevented by increasing the training sample 

size, by limiting the number of hidden nodes, by preventing the weights from getting too 

large, or by simply stopping training when overfitting begins (Smith, 1996:25).  Limiting 

the training is the preferred method because of decreased computation time (Smith, 

1996:117).  This can be accomplished through early stopping.  In early stopping, the data 

set is divided into a training set and a validation set.  The training data error will continue 

to decrease as the training time increases, so the validation set error must be measured 
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simultaneously.  When the error on the validation set increases, overfitting has begun 

(Smith, 1996:126).  At this time, training is stopped and the weights and biases that 

produced the lowest error on the validation set are used for the model (Smith, 1996:126). 

 

2.4.3 Signal-to-Noise Ratios 
 

  The signal-to-noise ratio (SNR) saliency measure provides even more insight into 

the architecture of an ANN.  This measure allows for the ranking of a population’s 

features based on their usefulness to the network (Bauer et al., 2000:31).  The SNR 

“directly compares the saliency of a feature to that of an injected noise feature”: 
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where SNRi is the value of the SNR saliency measure for feature i, J is the number of 

hidden nodes, 1
, jiw  is the first layer weight from node i to node j, and 1

, jNw  is the first 

layer weight from the injected noise node N to node j (Bauer et al., 2000:32).  The 

injected noise feature is a Uniform (0, 1) random variable.  If a feature is important to the 

network, the SNR saliency measure will be significantly larger than 0.0.  If not, then the 

SNR will be close to or less than 0.0.  The advantage of this method is that it may be 

completed in only one training run, whereas other methods require several. 

  

2.5 Regression Analysis 

 
 Regression analysis is a statistical technique for modeling the relationship 

between predictor and response variables (Montgomery et al., 2001:1).  A simple linear 
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regression model consists of the mean function, E ( ) xxXY 10 ββ +== , and the variance 

function, Var ( ) 2σ== xXY  (Weisburg, 2005:19).  The variance, σ2, is usually a positive 

value, so the expected value of the ith response usually does not equal the observed 

value, yi (Weisburg, 2005:19).  The difference between the observed value and the 

expected value is the statistical error, εi, defined by i iyε = −E ( )ixXY =  (Weisburg, 

2005:19).   

 A model with more than one predictor variable is a multiple linear regression 

model εββββ +++++= kk xxxy ...22110  (Montgomery et al., 2001:68).  The 

regression coefficients, βk, can be estimated using several methods.  One such method is 

the method of least squares, where the error term is assumed to have E(ε) = 0, Var(ε) = σ2 

and they are also assumed to be uncorrelated (Montgomery et al., 2001:71).  Multiple 

regression models are easily expressed in matrix notation by 

 = +y Xβ ε  (20) 
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, β is a p x 1 vector of regression coefficients,        
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, for n observations and p = 

k + 1 (Montgomery et al., 2001:73).  The observations, y, and the values of the regressor 

variables, X, are known, but the regressor coefficients, β, are unknown.  The β’s can be 

estimated by finding least-squares estimators, β̂ , that minimize the least-squares function 

S(β) = ∑
=

n

i
i

1

2ε ( Montgomery et al., 2001:74).  Once the least-squares estimators are found, 

fitted values, iŷ , corresponding to the observed values, yi, can be found using ˆˆ =y Xβ  

(Montgomery et al., 2001:75).  The difference between these two values is called the 

residual, ei, which can be expressed in matrix notation as e = y – ŷ (Montgomery et al., 

2001:75). 

 

2.5.1 Hypothesis Testing 
 
 Once the model has been estimated, a significance of regression test should be 

conducted to measure the accuracy of the model.  The hypotheses used in this test are 

(Montgomery et al., 2001:87) 

 0 1 2 k

1

: = = = = 0
:  0 for at least one jj

H
H

β β β
β ≠

K
 (21) 

Rejection of the null hypothesis indicates that at least one regressor variable significantly 

contributes to the model (Montgomery et al., 2001:87).  To test this, an analysis of 

variance (ANOVA) can be accomplished.  An ANOVA table, in Table 1, is usually used 

to summarize the results of the test (Montgomery et al., 2001:88). 
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Table 1.  ANOVA for Significance of Regression in Multiple Regression (Montgomery et al., 2001:88) 

Source of  
Variation   Sum of Squares  

Degrees of 
Freedom  Mean Square   F0 

Regression   SSR  k  MSR   MSR/ MSRes 
Residual  SSRes n-k-1 MSRes   
Total   SST  n-1        

 
 The total sum of squares, SST, measures the total variability in the observations 

and is made up of the sum of squares due to regression, SSR, and the residual sum of 

squares, SSRes (Montgomery et al., 2001:87) 

 ReT R sSS SS SS= +  (22) 

It can also be calculated with the following equation (Montgomery et al., 2001:89): 

 

2

1

n

i
i

T

y
SS

n
=

⎛ ⎞
⎜ ⎟
⎝ ⎠′= −
∑

y y  (23) 

The regression sum of squares is defined as 

 

2

1ˆ

n

i
i

R

y
SS

n
=

⎛ ⎞
⎜ ⎟
⎝ ⎠′= −
∑

βX y  (24) 

and the residual sum of squares is (Montgomery et al., 2001:89) 

 Re
ˆ

sSS ′ ′ ′= y y -β X y  (25) 

The regression mean square is found by dividing the regression sum of squares by its 

degrees of freedom 

 R RMS SS k=  (26) 

and the residual mean square, which is an unbiased estimator of the variance, is 

calculated by dividing the residual sum of squares by its degrees of freedom 
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 Re Res sMS SS n p= −  (27) 

where 1+= kp  (Perry, 2005).  To test the null hypothesis, the test statistic F0 must be 

calculated (Montgomery et al., 2001:90) 

 0 ReR sF MS MS=  (28) 

If pnkFF −> ,,0 α , then the null hypothesis would be rejected implying that the regressor 

variables are related to the response, although this does not imply that the model is the 

best prediction of the relationship between the regressors and the response (Montgomery 

et al., 2001:90). 

 The above hypothesis test determines if at least one regressor is important to the 

model.  To find which regressors are important, the significance of an individual 

regression coefficient can be tested.  The hypotheses and test statistic are  

 0

1

: 0

: 0
j

j

H

H

β

β

=

≠
 (29) 

 0 2

ˆ

ˆ
j

jj

t
C

β

σ
=  (30) 

where Cjj is the diagonal element of (X’X)-1 corresponding to jβ̂  (Montgomery et al., 

2001:91).  The null hypothesis can be rejected if 1,20 −−> kntt α  (Montgomery et al., 

2001:91).  If it cannot be rejected, the regressor xj can be removed from the model 

(Montgomery et al., 2001:91).  The above procedure tests the contribution of xj given all 

the other regressors are in the model (Montgomery et al., 2001:91).   



 

 35

 To test the contribution of a specific subset of r regressors on a regression model 

with k regressors, the extra-sum-of-squares method can be used.  In this method, the 

regression coefficients are partitioned into two sets 

1

2

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

ββ
β

 

where β1 is  (p – r) x 1 and β2 is  r x 1 (Montgomery et al., 2001:92).  This partitioning 

leads to the following model (Montgomery et al., 2001:92) 

 1 1 2 2y = X  β  + X  β  + ε  (31) 

The hypotheses and test statistic are   

 0 2

1 2

: 0
: 0

H
H

=
≠

β
β

 (32) 

 
( )2 1

0
Re

/R

s

SS r
F

MS
=

β β
 (33) 

where ( ) ( ) ( )2 1 1R R RSS SS SS= −β β β β  (Montgomery et al., 2001:94).  If pnrFF −> ,,0 α , 

the null hypothesis can be rejected implying that at least one of the regressors in X2 

contributes significantly to the model (Montgomery et al., 2001:94). 

 

2.5.2 Model Adequacy 
 
 After a model has been developed, the adequacy of the model should be 

examined.  One way to do this is through residual analysis.  It is good to use scaled 

residuals, as well as the original residuals, in this analysis because scaled residuals, such 

as studentized residuals, highlight observations that are outliers or extreme values. 
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 Since the hypothesis tests depend on the normality of the errors, it is important to 

check on the validity of this assumption.  This can be done by constructing normal 

probability plots of the residuals.  The residuals should be ranked in increasing order 

[ ] [ ] [ ]1 2 ne e e< < <L  and then plotted against their cumulative probabilities 1
2iP i n⎛ ⎞= −⎜ ⎟

⎝ ⎠
, 

i = 1, 2,…, n (Montgomery et al., 2001:138-139).  If the resulting plotted points 

substantially depart from a straight line, the distribution is not normal (Montgomery et 

al., 2001:139).  Figure 11 shows an example of an ideal normal probability plot. 

 
Figure 11.  Ideal normal probability plot (Montgomery et al., 2001:139). 

 
   Another graphical analysis technique is to plot the residuals versus their 

corresponding fitted values ˆiy , which allows for the detection of non-constant variance 

and nonlinearity.  Figure 12 shows examples of an ideal residual plot (a) and those that 

indicate model deficiencies (b-d).   
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Figure 12.  Patterns for residual plots: (a) satisfactory, constant variance; (b) increasing variance; (c) 

non-constant variance; (d) may indicate nonlinearity (Montgomery et al., 2001:142; Perry, 2005). 
 
 If residual analysis indicates non-constant variance or nonnormality in the error 

terms, or nonlinearity of the model, data transformations can be used to correct these 

problems.  Analytical methods, such as Box-Cox and Box-Tidwell, can be used to select 

the correct transformation needed. 
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 The Box-Cox method can be used to correct nonnormality and/or nonconstant 

variance (Montgomery et al., 2001:186).  The power transformation yλ is used in this 

method where λ is to be determined (Montgomery et al., 2001:186).  The procedure for 

the Box-Cox method follows (Perry, 2005; Montgomery et al., 2001:187)): 

1. Select a value for λ. 

a. Compute the temporary scaled response y(λ) 

 ( ) 1

1 ,    0

ln ,     0

y
y y

y y

λ

λ λ λ
λ

λ

−

⎧ −
≠⎪= ⎨

⎪ =⎩

&

&

 (34) 

 
1

1exp ln
n

i
i

y y
n =

⎡ ⎤⎛ ⎞
= ⎢ ⎥⎜ ⎟

⎝ ⎠⎣ ⎦
∑&  (35) 

b. Use the scaled response to fit the model 

 ( )λ = +y Xβ ε  (36) 

c. Calculate SSRes(λ) 

2. Repeat Step 1 for various λ’s.  Typically, 10-20 values are needed to estimate 
an optimum value. 

 
3. Plot the SSRes(λ) versus λ to find the value of λ that minimizes SSRes(λ). 

4. Fit the model using yλ as the response if λ ≠ 0.  If λ = 0, then use ln y. 

 
If the relationship between y and its regressors is nonlinear, but the assumptions 

of normality and constant variance are satisfied, the Box-Tidwell method can be used to 

select a transformation on the regressor variables (Montgomery et al., 2001:190).  The 

steps for the Box-Tidwell method are as follows (Perry, 2005; Montgomery et al., 

2001:191): 
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0. Assume that the response y is related to a power of the regressor x′ , where  

 
ln ,    0

,     0   
x

x
xα

α

α

=⎧
′ = ⎨

≠⎩
 (37) 

1. Fit 0 1
ˆ ˆŷ xβ β= +  by least squares. 

2. Define another regressor lnw x x=  and fit 0 1
ˆ ˆ ˆŷ x wβ β γ= + +  by least squares. 

3. Define 
1

ˆˆ 1ˆj
γα
β

= + , where j is the number of iterations. 

4. Replace x with ˆx xα′ =  and w with lnw x x′ ′ ′= .  Return to Step 1. 

 
This procedure usually converges quickly, so a single iteration often gives a satisfactory 

estimate of α (Montgomery, 2001:192). 

 The nonconstant variance problem can also be addressed by fitting the model 

using the weighted least squares method.  The variance of the errors are said to be 

uncorrelated and unequal with a covariance matrix of (Montgomery et al., 2001:195) 

 

1

2 2
2

1                    0

1       

               
10                    

n

w

wV

w

σ σ

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

O

 (38) 

The weighted least-squares estimator is (Montgomery et al., 2001:196) 

 ( ) 1ˆ −′ ′=β X WX X Wy  (39) 

where 1−W = V .  The weights wi must be known and residual analysis can sometimes 

give an indication of what they are (Montgomery et al., 2001:196).  For example, the 
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variance could be a function of one of the regressors, ( ) 2
i ijVar xε σ= , so that 1i ijw x=  

(Montgomery et al., 2001:196).  Most often, the weights will have to be estimated, the 

analysis performed, and the weights reestimated based on the results, which may take 

several iterations (Montgomery et al., 2001:196). 
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3. Methodology 

 
 

 This chapter describes the methods used to detect and identify chemical agents.  

Section 3.1 provides background information on the data used for this study.  Section 3.2 

outlines the different phases of analysis and the assumptions used.  Section 3.3 presents 

the specific methods used to classify the data. 

 

3.1 Background Information 

 
 The data used for this study was generated through several experiments conducted 

at The University of Dayton by Dr. Wei Chen.  These chemical detection experiments 

were conducted on carbon nanotube polymer composite sensors composed of multi-

walled carbon nanotubes embedded in a polymer film, as seen in Figure 13.   

 
Figure 13.  Scanning electron microscope (SEM) image of an aligned carbon nanotube array in a 

polymer matrix (Wei et al., 1006)   
  

Three different sensors, made of the following polymers, were used: (1) polyisopropene 

(PI), (2) poly(vinyl acetate) (PVAc), and (3) a 1:1, by weight, mixture of the two (PI-
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PVAc).  These 3 sensors were individually exposed to 3 different chemical vapors:       

(1) cyclohexane, (2) ethanol, and (3) tetrahydrofuran (THF). 

 Once the chemical was exposed to the sensor, the resistance was measured by a 

multimeter and a change in relative resistance was calculated with the following 

equation:      

 0

0

( ) *100R R
R
−  (40) 

where R is the resistance after exposure in kiloohms (kΩ) and R0 is the initial resistance 

in kΩ (Wei, 2006).  The experimental error was about 5% in terms of relative resistance 

(Wei, 2006). 

The experiment began by exposing each sensor to air for 110 seconds.  Each 

sensor was then exposed to a chemical from 120 to 230 seconds.  After this, the sensor 

was once again exposed to air for another 120 seconds thus beginning the cycle of 

exposure to air and chemical.  This cycle continued for approximately 30 minutes.  
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3.2 Phases of Analysis and Assumptions 

 
 Three different sets of data were used in this research.  The initial set was from 

sensors that had approximately 20 experiments conducted on them.  The second data set 

was from identical sensors that had been “aged” seven to nine months and had about 50 

experiments conducted on them.  The last data set was from a new set of sensors that had 

no experiments conducted on them.  Because of this, analysis consisted of four phases, as 

shown in Figure 14: 

- Phase one: initial data set classified by vapor 

- Phase two: initial data set sensor three predicted from sensors one and 
two 

 
- Phase three: models developed from initial data set and validated by 

second data set 
 

- Phase four: same models developed in phase three validated by last 
data set 
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Figure 14.  Phases of analysis (a) phase one, (b) phase two, (c) phase three, (d) phase four. 
 

In the first phase Fisher’s discriminant method, the quadratic discriminant scores 

method, and neural networks were used to classify the data by vapor.  This would allow 

for the identification of an unknown vapor.  During this phase, the sensors were assumed 

to be independent.  Also, to use the quadratic discriminant scores method, we must 

assume the populations are multivariate normal.  The second phase dealt with predicting 
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the output of the mixture sensor from the poly(vinyl acetate) and polyisopropene sensor 

data using linear regression and neural networks.  At this point, it was assumed that the 

output of the mixture was dependent on the interactions of the pure polymer data.  Since 

a linear regression was used for prediction, it was also assumed that the relationship 

between the response and the regressors was approximately linear.  Also, the errors were 

assumed to be independent random variables with a mean of zero and a constant 

variance.  The same assumptions from phase one and two were applied to phases three 

and four. 

 

3.3 Methods of Analysis 
 

Analysis was split up into four phases with a specific methodology for each. 

3.3.1 Phase One 
 
For phase one, the initial set of data was used and classified according to vapor.  

All the data was split up by vapor and features (F) were calculated for each vapor i, 

sensor j, and exposure k using the following equation (Doleman et al., 1998:4180):  

 ( )max 0

0

100 /ijkijk ijk
ijk

R R
F x S

R

⎡ ⎤−⎛ ⎞
⎢ ⎥= ∗ −⎜ ⎟
⎢ ⎥⎝ ⎠⎣ ⎦

 (41) 

( )max 0

0

100
R R

R
−

∗  = maximum relative change in resistance  

1

1
m

n

ijk ijk
m

x x
n =

= ∑  = average relative change in resistance  

( )2

1

1

m

n

ijkijk
m

ijk

x x
S

n
=

−
=

−

∑
= standard deviation of relative change in resistance  
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The classifier was trained against the first six exposures and the last exposure was used to 

test the prediction capability of the function.   

The covariance matrices were equal, so Fisher’s approach was used for 

classification.  Quadratic discriminant scores were also calculated, using Equation 16, for 

comparison.  Three scores, correlating to each vapor, were calculated for each 

observation.  The scores were the discriminating feature of the vapors.  For Fisher’s 

approach, the same equations were used, but the individual covariance matrices for each 

vapor were replaced with the pooled covariance matrix.  

 Following this, a neural network analysis was performed using the Statistical 

Neural Network Analysis Package (SNNAP) software to validate the quadratic 

discriminate score method.  A tutorial for using SNNAP is in Section 3.4 of this chapter.   
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After classification was completed, confusion matrices were created, for both 

methods, for n1 observations from π1, n2 observations from π2, and n3 observations from 

π3 in the form (Johnson, 2002:601) 

Predicted membership 

 π1 π2 π3 

π1 n1C n1M2 n1M3 

π2 n2M1 n2C n2M3 

π3 n3M1 n3M2 n3C 

where 

n1C = number of π1 items correctly classified as π1 items 
n1M2 = number of π1 items misclassified as π2 items 
n1M3 = number of π1 items misclassified as π3 items 

n2C = number of π2 items correctly classified as π2 items 
n2M1 = number of π2 items misclassified as π1 items 
n2M3 = number of π2 items misclassified as π3 items 

n3C = number of π3 items correctly classified as π3 items 
n3M1 = number of π3 items misclassified as π1 items 
n3M2 = number of π3 items misclassified as π2 items 

 
From the confusion matrix, the apparent error rate (APER) was calculated (Bauer, 

2005a:85) 

 1 2 1 3 2 1 2 3 3 1 3 2

1 2 3

APER M M M M M Mn n n n n n
n n n

+ + + + +
=

+ +
 (42) 

Since the amount of data available was small, Lachenbruch’s Holdout procedure 

was used to find an average error rate in classifying the data.  To do this, the neural 

network was trained several times, each time leaving a different observation out of the 

training data set.  For example, instead of using observation seven for validation, 

Actual 
membership 
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observation one and so on were held out and used.  Once the procedure was completed, 

an expected actual error rate was calculated (Bauer, 2005a:86) 

 E(AER)
hg

h g

I

HG
=
∑∑

 (43) 

where H is the total number of holdout procedures, G is the total number of gases 

classified, and 

1 if misclassified for holdout , gas 
0 if classified correctlyhg

h g
I ⎧

= ⎨
⎩

 

3.3.2 Phase Two 
 
In phase two, rather than using features, the raw data from the initial data set was 

used to try to predict the output of sensor three.  A linear regression of the data using the 

method of least squares was first used to accomplish this.  The third sensor’s data was 

used as the response, while the other two sensors’ data represented the regressor 

variables.  The coefficients of the model were found by calculating the least-squares 

estimator of β, for each gas, with (Montgomery, 2001:74)         

 -1β̂ = (X'X) X'y  (44) 

where 

y = response vector 

X = regressor variable matrix 

The predicted values of the third sensor, iŷ , were calculated by finding those ˆˆ =y Xβ  that 

corresponded to the actual values iy  (Montgomery, 2001:75).  To assess the validity of 
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the model, an ANOVA table was constructed and the adjusted R2 ( 2
AdjR ) was calculated 

(Montgomery, 2001:90):                         

 2 Re ( )1
( 1)

s
Adj

T

SS n pR
SS n

−
= −

−
 (45) 

where n is the number of observations and p is the number of parameters estimated. 

 Since normality of the errors was assumed, a normal probability plot was 

developed to check this assumption.  An analysis of the model residuals was then 

conducted to assess the validity of the constant variance and linear assumptions and 

examine the model’s adequacy.  To do this, the studentized residuals, ir , were calculated 

with (Montgomery, 2001:134):      

 
Re

    = 1, 2, ,      
(1 )
i

i
s ii

er i n
MS h

=
−

K  (46) 

where 
=iih ith diagonal element of the hat matrix 

The studentized residuals were plotted against the fitted values iŷ  to detect any model 

defects.   

 A neural network analysis, through SNNAP, was used to find better predictions of 

the sensor three data.  In both methods, the first six observations were used to train and 

the last observation was used to test the algorithms.  After both approaches were 

completed, a root mean square error (RMSE) was calculated to help identify which model 

performed best   

 

2

1

ˆ( )
n

i i
i

y y
RMSE

N
=

−
=
∑

 (47) 
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3.3.3 Phases three and four 
 
In phase three of the analysis, new data from the same sensors used in the initial 

data set was used to validate the models based on the initial data set.  The same methods 

used in phases one and two were used to develop the classification and prediction 

models.  In phase four, data from new sensors was compared to the initial data set to 

observe if different sensors of the same type produced different readings. To do this, the 

data was tested against the same models used for validation in phase three. 

 

3.4 SNNAP Tutorial 

 
 The following tutorial shows the steps that can be used to reproduce the neural 

networks acquired in this thesis.  After the data is formatted in a .dat file, it is input into 

the SNNAP software by choosing New in the File Menu.  Once the file is chosen, a 

Choose Model Variables window, Figure 15, appears where input and output variables 

are selected for the neural network analysis that is needed. 

 
Figure 15.  Choose Model Variables window 

 
Once the model variables are accepted, a New Network window, Figure 16, will appear 

and Back Propagation should be used as the Network Type. 
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Figure 16.  New Network window 

 
After the Network type is chosen, a Structure window appears.  Once the Suggest button 

is clicked, a Structure Suggest window will pop-up, Figure 17.  After one of the output 

data options is selected, the Structure window, Figure 18, will appear again with the 

suggested structure that the program selected.  The Input Layer should have a Linear 

Layer Type and the Layer 1 and Output Layer should be Sigmoid.  Next, a Data Options 

window will appear where a validation sample can be chosen based on the current data 

using the modulus option.  If modulus is selected, a Define Validation Sample box will 

pop-up, Figure 19, so size of the validation sample can be chosen.  If separate file is 

selected, the software will allow the user to browse files for the data to be used for 

validation. 

 
Figure 17.  Structure Suggest window 

 



 

 52

 
Figure 18. Structure window 

 

      
Figure 19.  Data Options and Define Validation Sample windows 

 
After data options are selected, a Data Scaling, Figure 20, window will appear where 

standardize input variables and no transformation on output variables should be chosen.  

Finally, a Parameters window, Figure 21, will appear and OK should be selected to 

accept the parameters given. 
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Figure 20.  Data Scaling window 

 

 
Figure 21.  Parameters window 

 
 Before the neural network is trained, the weights should be saved by selecting 

Text Save from the Network Menu.  This will allow the user to save all node weights to a 

specific file for use in future analysis.  After this, the network can be trained by selecting 

Train from the Train Menu.  The Stop Training option in the Train Menu allows the user 

to stop the training of the neural network.  The Confusion Matrix option in the Network 

menu will produce confusion matrices for the training and validation samples.  The final 

option needed to reproduce the outputs in this thesis is the Projection feature, Figure 22, 

where the user can apply the trained neural network to another file and designate a file for 

the output. 
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Figure 22.  Model Projection window 
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4. Results and Analysis 

 
 

 In this chapter, the four phases outlined in Chapter 3 are used to analyze the 

experimental data.  In Section 4.1, the sensor data is presented.  Section 4.2 provides the 

numerical results of the analysis phases.   

 

4.1 Data 

 During the experiment, change in relative resistance data was collected over time.  

Figure 23 shows the experimental data in a scaled graph matrix with equal y axes.  From 

this set of plots, the range in the output between the gas/sensor combinations is obvious.  

The data was also graphed with different y axes proportional to each plot, in Figure 24, so 

that the changes in each gas/sensor output could be easily identified. 
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Figure 23.  Data matrix by gas and sensor 
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Figure 24.  Scaled data matrix by gas and sensor 

 
 

4.2 Analysis 

 
Analysis was divided into four phases.  The first phase consisted of taking vapor 

detection data from a specific set of sensors and using various techniques, including 

quadratic discriminant scores and neural networks, to classify the vapors.  In phase two, 

the same data was used and sensor three data was predicted using sensor one and two 

data.  Phase three involved using data from experiments conducted on the same set of 

sensors used in phases one and two.  The difference was that the sensors were older at the 

time of these experiments and had several other experiments conducted on them.  This 

data was used to validate classification and prediction models based on the initial data 

set.  Finally, in phase four, data taken from new sensors of the same type were also used 

to validate the same models developed in phase three. 

Sensor



 

 57

4.2.1 Phase One 
 
 During this phase, features calculated from the initial data set were used to 

classify the data by vapor.  Table 2 shows the calculated features according to sensor and 

vapor.  Exposures 1 through 6 were used to train the data, while exposure 7 was used to 

test the algorithm developed from the training.   

Table 2.  Data features 

Exposure Sensor 1 Sensor 2 Sensor 3 Vapor 
1 1.3464947 0.833412240.80910072 1 
2 1.212321270.608725780.95624728 1 
3 1.064812270.874271161.00498005 1 
4 1.0929826 0.790293221.25580843 1 
5 1.045451941.076383230.85839787 1 
6 1.089108910.907783850.73880252 1 
7 1.186633250.828902410.81007631 1 

          
1 1.129646860.782374250.96890643 2 
2 0.992380410.846381910.91405588 2 
3 1.3438907 0.721380310.91118717 2 
4 1.386556430.75648524 1.0764978 2 
5 1.245688490.819686271.16606724 2 
6 1.321778390.774939051.19758733 2 
7 1.206934921.137127671.12664602 2 

          
1 0.511338451.790675430.70798521 3 
2 0.696214 0.927208741.31292104 3 
3 1.126247141.087518990.71844641 3 
4 0.803962931.182150311.32391398 3 
5 0.930185311.094389930.73071483 3 
6 0.872401431.053724580.91074049 3 
7 1.248886281.033269011.07721608 3 

 
These features were used to calculate discriminant scores.  Three scores were calculated 

for each observation.   If the largest score was score 1, then the vapor was predicted to be 

cyclohexane.  If the largest was score 2, the predicted vapor was ethanol.  Lastly, if the 
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largest was score 3, the vapor was predicted as THF.  The Fisher’s confusion matrices in 

Table 3 show that the training data classified fairly well with an APER of 27.8% and the 

method continued to perform similarly for the test data resulting in an APER of 33.3%.  

The quadratic analysis confusion matrices in Table 4 showed that the training data was 

fairly successful at identifying the correct vapor with an APER of 11.1%, performing 

better than Fisher’s, but the test data performed poorly with an APER of 66.7%. 

Table 3.  Phase one Fisher's discriminant analysis confusion matrices 
Training:     

Actual 
Group # of Cases   Predicted   

    V1 V2 V3 
V1 6 4 2 0 
V2 6 2 4 0 
V3 6 1 0 5 

Test:     
Actual 
Group # of Cases   Predicted   

    V1 V2 V3 
V1 1 1 0 0 
V2 1 0 1 0 
V3 1 0 1 0 

 
Table 4.  Phase one quadratic discriminant analysis confusion matrices 

Training:     
Actual 
Group # of Cases   Predicted   

    V1 V2 V3 
V1 6 6 0 0 
V2 6 1 5 0 
V3 6 1 0 5 

Test:     
Actual 
Group # of Cases   Predicted   

    V1 V2 V3 
V1 1 1 0 0 
V2 1 0 0 1 
V3 1 1 0 0 
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 For the neural network analysis, the data set was input in the same manner, 

training against the first six exposures and validating the network with the last exposure.  

The sensor features per vapor were the input variables and the output variables were the 

three vapors.  The data was trained with 6 hidden nodes to 200 epochs and resulted in the 

confusion matrices in Table 5.  These confusion matrices also showed that the neural 

network performed poorly for the validation sample with a similar APER of 66.7%.            

Table 5.  Phase one neural network analysis confusion matrices 
Training:     

Actual 
Group 

# of 
Cases   Predicted   

    V1 V2 V3 
V1 6 4 1 1 
V2 6 1 5 0 
V3 6 1 0 5 

Test:     
Actual 
Group 

# of 
Cases   Predicted   

    V1 V2 V3 
V1 1 0 1 0 
V2 1 1 0 0 
V3 1 0 0 1 

  
 Lachenbruch’s Holdout procedure was used to find an average error rate in 

classifying the data.  To do this, the neural network was trained six more times, each time 

leaving a different observation out of the training data set.  For this instance, there were 

seven holdouts (H) and three gases (G).  The expected actual error rate for the training 

data was 12.7% and for the test data it was 52.4%.  This average error confirmed the poor 

performance of the data.  Confusion matrices for all seven procedures can be found in 

Appendix D. 



 

 60

Because the above methods performed so poorly, the data itself was closely 

examined and it was discovered that the single feature was not enough information to 

accurately classify the gases.  Another feature was created based on the slopes of the 

plots formed when a sensor was exposed to a chemical.  The following feature was 

calculated based on the slope of the last six readings of each observation:   
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max 0 max 0
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where l is the last reading during exposure.  For example, in observation one, the 

difference in the resistance change at 230 seconds and 180 seconds divided by 50 seconds 

would result in the appropriate feature for observation one.  Table 6 shows the new 

feature according to sensor and vapor. 
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Table 6.  Data feature based on slope 

Exposure Sensor 1 Sensor 2 Sensor 3 Vapor 
1 0.3065 0.0190996 0.0846064 1 
2 0.2685 0.005457 0.0916568 1 
3 0.211 0.0245566 0.1222092 1 
4 0.215 0.021828 0.1903644 1 
5 0.1995 0.0491134 0.094007 1 
6 0.222 0.0300136 0.0376028 1 
7 0.232 0.0245566 0.0775558 1 

          
1 0.0836502 0.1214098 0.1431924 2 
2 0.0380228 0.1736292 0.1173708 2 
3 0.0912548 -0.0639686 0.1079814 2 
4 0.0912546 0.113577 0.2253522 2 
5 0.0912548 -0.227154 0.2347418 2 
6 0.0912548 0.1409922 0.2464788 2 
7 0.068441 0.302872 0.1713616 2 

          
1 0.0063254 1.6802412 0.043423 3 
2 0.0060576 -0.325792 0.0434228 3 
3 0.0160612 0.9170436 0.0374336 3 
4 0.0031516 0.9773754 0.050161 3 
5 0.011094 0.8687782 0.0449202 3 
6 0.0064678 0.8325792 0.017968 3 
7 0.0103678 0.8325792 0.074867 3 

 
 Discriminant scores were recalculated and the neural network retrained with this 

additional feature and the resulting confusion matrices in Tables 7, 8, and 9 show that the 

additional feature improves the performance of both the test and training data.  Fisher’s 

method resulted in a 0% APER for both the training and test data, while the quadratic 

scores method resulted in an APER of 0% for the training data and 33.3% for the test 

data.  The neural network was trained with 10 nodes to 500 epochs and resulted in 0% 

APER for both data sets. 
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Table 7. Fisher's analysis confusion matrices for phase one with two features 
Training:     

Actual 
Group # of Cases   Predicted   

    V1 V2 V3 
V1 6 6 0 0 
V2 6 0 6 0 
V3 6 0 0 6 

Test:     
Actual 
Group # of Cases   Predicted   

    V1 V2 V3 
V1 1 1 0 0 
V2 1 0 1 0 
V3 1 0 0 1 

 
Table 8.  Quadratic discriminant analysis confusion matrices for phase one with two features 

Training:     
Actual 
Group # of Cases   Predicted   

    V1 V2 V3 
V1 6 6 0 0 
V2 6 0 6 0 
V3 6 0 0 6 

Test:     
Actual 
Group # of Cases   Predicted   

    V1 V2 V3 
V1 1 1 0 0 
V2 1 0 0 1 
V3 1 0 0 1 
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Table 9.  Neural network confusion matrices for phase one with two features 
Training:     

Actual 
Group # of Cases   Predicted   

    V1 V2 V3 
V1 6 6 0 0 
V2 6 0 6 0 
V3 6 0 0 6 

     
Test:     

Actual 
Group # of Cases   Predicted   

    V1 V2 V3 
V1 1 1 0 0 
V2 1 0 1 0 
V3 1 0 0 1 

 
For further analysis, noise was introduced into the data so signal-to-noise ratios 

could be computed.  Signal to noise ratios were calculated with the following equation 

(Bauer, 2000:32):            
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1
, jiw = hidden node weight 

 
1

, jNw = noise node weight 

J = number of hidden nodes connected to each feature i 

Table 10 shows the hidden node weights of the neural network along with the signal to 

noise ratios (SNR).  Most of the ratios are similar, indicating most of the sensor data is 

important in distinguishing between the gases.  The feature two, sensor three SNR is 

smaller compared to the rest indicating it may have less influence on the neural network.  

Because of this, another neural network was trained with all other features except for 
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feature two of sensor three.  This neural network resulted in less accuracy in classifying 

the data, indicating that feature two, sensor three data was needed to properly classify the 

vapors.   

Table 10.  Hidden node weights and signal-to-noise ratios for the neural network 
    Feature 1     Feature 2    
 Noise Sensor 1 Sensor 2 Sensor 3 Sensor 1 Sensor 2 Sensor 3 Bias 
 0.015476 0.058538 0.038078 0.0252850.038231 0.000449 -0.04065 0.035887
 0.007016 -0.07382 -0.00946 0.09303 -0.09808 0.090411 0.024747 -0.05055
 -0.01109 -0.05553 0.020847 -0.07848 -0.0941 -0.08741 0.00698 -0.01324
 -0.00542 -0.00957 0.064129 0.0255780.071697 0.034574 -0.0665 -0.07427
 -0.0665 -0.08816 -0.00845 -0.03133 -0.0128 -0.0229 0.03621 0.015983
 -0.09698 0.048296 0.02833 -0.08473 0.080853 -0.05238 0.031864 0.043675
 0.024979 -0.02271 0.096667 0.0082 0.020847 -0.00103 -0.07241 0.02136
 0.007486 0.085345 0.083734 -0.02903 0.039396 0.012864 -0.04864 -0.09716
 0.031632 -0.03593 0.034629 -0.06489 -0.01811 -0.09142 0.007407 -0.07703
 -0.03681 0.031285 0.070367 0.0925470.081164 0.076519 0.056743 -0.03742
sum sq 0.017304 0.032225 0.029467 0.037956 0.04068 0.034658 0.019945 0.028927

SNR   2.70041 2.311808 3.41119 3.712255 3.016482 0.616759 2.231443
 

 Once again, Lachenbruch’s Holdout procedure was conducted on the two data 

features to find an average error rate in classification.  The expected actual error rate for 

the training data was 0% and for the test data it was 9.52%, so, on average, the data was 

able to be classified accurately.  Confusion matrices for all seven holdouts can be found 

in Appendix D. 
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4.2.2 Phase Two 
 
 Phase two analysis began with a linear regression of the data to predict the sensor 

output of sensor three for each vapor.  The X matrices were set up as [ ]1 2, , ,=X 1 x x t .  

The least-squares estimator of β for each vapor was 

1

11.4945
0.1979ˆ
2.3821
0.0045

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

β  2

2.5636
2.2863ˆ
0.1927
0.0047

−⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

β  3

10.2563
0.4618ˆ
0.0785
0.0491

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

β  

where vapor one was cyclohexane, vapor two was ethanol, and vapor three was THF. 

 The following models were developed: 

 1 1 2ˆ 11.4945 0.1979 2.3821 0.0045y x x t= + + +  (50) 

 2 1 2ˆ 2.5636 2.2863 0.1927 0.0047y x x t= − + + +  (51) 

 3 1 2ˆ 10.2563 0.4618 0.0785 0.0491y x x t= + + +  (52) 

where ŷ  is the predicted value of sensor three, 1x  is sensor one data, 2x is sensor two 

data, and t is time.  The first six exposures were used to build the models and the seventh 

exposure was used to validate them. 

 To test the significance of regression, the ANOVA tables shown in Tables 11-13, 

were developed. 

Table 11.  ANOVA table for cyclohexane 

Source of  
Variation   Sum of Squares   

Degrees of 
Freedom   Mean Square   F0 

Regression   6.48E+03   3   2.16E+03   193.4223 
Residual  7.60E+02  68  11.17   
Total   7.24E+03   71         
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Table 12.  ANOVA table for ethanol 

Source of  
Variation   Sum of Squares   

Degrees of 
Freedom   Mean Square   F0 

Regression   9.95E+03   4   3.32E+03   240.3473 
Residual  9.38E+02  68  13.7957   
Total   1.09E+04   71         
 

Table 13.  ANOVA table for THF 

Source of  
Variation   Sum of Squares   

Degrees of 
Freedom   Mean Square   F0 

Regression   4.52E+04   4   1.51E+04   330.1967 
Residual  3.10E+03  68  45.5798   
Total   4.83E+04   71         
 

The resulting p-values of approximately zero led to rejection of the null hypothesis 

indicating that at least one of the variables significantly contributed to all models.  The 

2
AdjR  of the models were 0.8905, 0.9100, and 0.9329, respectively.  These values 

indicated that most of the variability in the y’s was explained by the models. 

  Since normality of the errors is required to conduct the above significance test, 

normal probability plots (NPP) were constructed to ensure that this assumption could be 

made.  The NPPs, in Figures 25-27, are basically linear with some outliers present, which 

led to the acceptance of the normality assumption. 
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Figure 25.  Normal probability plot for cyclohexane 
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Figure 26.  Normal probability plot for ethanol 

 

-15 -10 -5 0 5 10 15 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Residual

P
ro

ba
bi

lit
y

 
Figure 27.  Normal probability plot for THF 
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 To further assess the adequacy of the models, a residual analysis for each model 

was performed.  The plots for cyclohexane and ethanol in Figures 28 and 29 indicated 

that the constant variance and linear relationship assumptions could be applied to these 

gases, but Figure 30 showed that they could not be applied to THF.    
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Figure 28.  Sensor three residual plot for cyclohexane 
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Figure 29.  Sensor three residual plot for ethanol 
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Figure 30.  Sensor three residual plot for THF 

 
 Since the THF errors were found to have nonconstant variance, a weighted least 

squares was performed for model improvement.  The variability was estimated using the 

moving range (MR) defined as (Montgomery, 2005:232) 

 1MR i i iy y −= −  (53) 

From this, the weights were calculated as 1
MR

 resulting in the following model: 

 3 1 223.3408 1.9601 0.0752 0.0535y x x t= − + +  (54) 

The residual plot, though, still indicated nonconstant variance as seen in Figure 31. 
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Figure 31.  Weighted least squares plot for THF 
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Piecewise polynomial fitting (or splines) and a sinusoidal model were also used to 

develop a better model for THF.  None of these methods succeeded in good estimates for 

sensor three data based on sensors one and two.  This is due to the data, as seen in the y 

versus regressors plots in Figure 32, which would require nonlinear techniques for 

prediction.  Because of this, the neural network served as the sole prediction method for 

THF.    

    
Figure 32. Plots of response, y, versus regressors, x1 and x2 

 
 Although the regression techniques led to adequate models for cyclohexane and 

ethanol, a neural network analysis was accomplished on all vapors to better predict the 

output of sensor three.  The data of the first two sensors were used as inputs with the third 

sensor identified as the output.  The neural network was trained with 5 nodes to 500 

epochs. 

 The predicted values of both methods were graphed, in Figure 33, with the actual 

data to compare prediction capability of both models.  The RMSEs, in Table 14, showed 

that the regression performed better than the neural network in predicting the third sensor 
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for cyclohexane and ethanol.  They also showed that the neural network performed fairly 

well in predicting all the vapors, including THF. 

Table 14.  RMSE's for sensor three models 

                                RMSE 
Vapor Neural Network Regression 

Cyclohexane 2.899 1.687 
Ethanol 4.824 4.380 

THF 9.857 - 
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Ethanol - 7th Observation
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THF - 7th Observation
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Figure 33.  Predicted and actual values of sensor three by vapor 
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4.2.3 Phase Three 
  
 For phase three, data from a new set of sensors was used, as plotted in Figure 34.  

It was obvious that this data was different than the data in phase one, so it was not 

surprising if the models built on phase one data did not accurately classify this data.  

After discussions with Dr. Wei Chen, it was discovered that these differences were most 

likely due to the fact that the sensors during phase three experiments were months older 

than in phase one.  During these months of aging, several experiments had been 

conducted on them which allowed for residual chemical build up in the sensors.  This 

could have lead to different readings on specific sensors based on their chemical 

characteristics.  Even though this was viewed as a potential issue, discriminant techniques 

were applied to the data to prove that sensor age impacted sensor classification. 
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Figure 34.  Phase three data matrix by vapor and sensor 
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 Features, in Table 15, were once again calculated using Equations 41 and 48.  

They were then used to validate the models that were developed from the features in 

phase one.   

Table 15.  Phase three data features 
   Feature 1     Feature 2    

Exposure Sensor 1 Sensor 2 Sensor 3 Sensor 1 Sensor 2 Sensor 3 Vapor
1 1.175931 1.023003 0.56661 0.225396 0.020878 0.006088 1 
2 1.212669 1.084147 1.538628 0.225396 0.041647 0.346308 1 
3 0.971214 0.885291 1.419109 0.072459 -0.00787 0.293008 1 
4 0.882484 0.978941 0.583188 0.126286 0.041264 0.021622 1 
5 1.373864 0.828139 0.883084 0.315626 0.004844 0.120299 1 
6 1.244025 0.989828 0.966607 0.290648 0.029388 0.180462 1 

                
1 0.860175 1.141115 1.374607 0.032034 0.248222 -0.31358 2 
2 1.236764 1.333025 1.132702 0.053152 0.284644 0.018756 2 
3 1.025822 0.88837 1.151288 0.027601 0.11329 0.110866 2 
4 1.063816 1.121701 0.833965 0.021488 0.242582 0.024657 2 
5 1.276944 0.912194 0.797551 0.049089 0.107429 0.055433 2 
6 0.879069 0.982816 0.944214 0.008892 0.123024 0.053349 2 

                
1 1.465 1.395871 1.355226 -0.06968 -0.63253 0.145715 3 
2 1.132704 0.840745 0.635177 0.004168 -0.0726 0.04204 3 
3 1.151289 1.246459 0.89028 0.024637 -0.28996 0.189372 3 
4 0.833969 2.735958 0.506979 0.005479 -0.16609 -0.1009 3 
5 0.852657 0.507814 0.801067 0.012319 0.137248 -0.01368 3 
6 0.944213 0.571045 0.679397 0.011855 0.194932 0.175784 3 

 
 The results of classification using Fisher’s and quadratic discriminant analysis are 

shown in Tables 16 and 17.  The training data were classified perfectly for both methods, 

but the test data performed less accurately with an APER of 55.6% for Fisher’s and 

38.9% for the quadratic, which was expected since the data looked so different.   
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Table 16.  Phase three Fisher's analysis confusion matrices 
Training Data:     

Actual 
Group # of Cases   Predicted   

    V1 V2 V3 
V1 7 7 0 0 
V2 7 0 7 0 
V3 7 0 0 7 

Test Data:     
Actual 
Group # of Cases   Predicted   

    V1 V2 V3 
V1 6 4 2 0 
V2 6 0 1 5 
V3 6 0 3 3 

 
Table 17.  Phase three quadratic discriminant analysis confusion matrices 

Training Data:     
Actual 
Group # of Cases   Predicted   

    V1 V2 V3 
V1 7 7 0 0 
V2 7 0 7 0 
V3 7 0 0 7 

Test Data:     
Actual 
Group # of Cases   Predicted   

    V1 V2 V3 
V1 6 5 1 0 
V2 6 0 4 2 
V3 6 0 4 2 

 
Table 18 shows that the neural network also performed well on the training data, 

but significantly misclassified the test data with an APER of 55.6%. 
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Table 18.  Phase three neural network confusion matrices 
Training Data:     

Actual 
Group # of Cases   Predicted   

    V1 V2 V3 
V1 7 7 0 0 
V2 7 0 7 0 
V3 7 0 0 7 

     
Test Data:     

Actual 
Group # of Cases   Predicted   

    V1 V2 V3 
V1 6 5 1 0 
V2 6 0 1 5 
V3 6 0 4 2 

 
 The above results showed that the age of the sensor impacted the classification of 

the vapors, especially ethanol and THF. 

 Next, the prediction techniques used in phase two were used to develop models on 

the full phase two data set with no holdouts.  The phase three data was then used to 

validate these models.  The new regression models for cyclohexane and ethanol were: 

 1 1 2

2 1 2

11.4133 0.2131 2.3595 0.0039
1.9520 2.0608 0.2277 0.0029

y x x t
y x x t
= + + +
= − + + +

 (55) 

These models passed the checks for adequacy and had 2
AdjR  of 0.9052 and 0.9102, 

respectively.  The neural network was once again trained with four nodes to 100 epochs 

using sensors one and two as the inputs and sensor three as the output.  Table 16 shows 

the RMSE’s of both the neural network and least squares regression for phase three data.  

The RMSE’s show that phase one and two models were not the best prediction models 

for phase three data, which further shows the impact of the aged sensors.  An example of 
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a predicted values versus actual data plot is shown in Figure 35.  The rest of the plots are 

located in Appendix E. 

Table 19.  Phase three RMSE's 

                            RMSE 
Vapor Neural Network Regression 

Cyclohexane     
Exposure 1 4.263 6.130 
Exposure 2 14.880 12.403 
Exposure 3 16.489 16.981 
Exposure 4 7.902 7.349 
Exposure 5 14.218 15.026 
Exposure 6 6.392 7.876 

Ethanol     
Exposure 1 8.795 7.016 
Exposure 2 7.533 5.596 
Exposure 3 5.311 4.661 
Exposure 4 5.190 3.732 
Exposure 5 4.065 6.873 
Exposure 6 1.537 6.241 

THF     
Exposure 1 13.250 - 
Exposure 2 21.906 - 
Exposure 3 28.437 - 
Exposure 4 25.909 - 
Exposure 5 12.298 - 
Exposure 6 15.229 - 
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Figure 35.  Predicted and actual values of sensor three for cyclohexane exposure one. 

 
 

4.2.4 Phase Four 

Phase four data, plotted in Figure 36, was also very different from the initial set of 

data.  This data was collected from a newly manufactured set of PI, PVAc, and PI-PVAc 

sensors.  It was expected that these data would also not be sufficiently classified and 

predicted by the models developed from the first set of data.  The same methods used in 

phase three were used to show the inconsistencies between different sensor sets.  
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Figure 36.  Phase four data matrix by vapor and sensor 

 

 Table 20 shows the data features that were calculated using Equations 41 and 48.  

These features were used to validate the same models developed in phase three. 

Table 20.  Phase four data features 
   Feature 1     Feature 2    
Observation Sensor 1 Sensor 2 Sensor 3 Sensor 1 Sensor 2 Sensor 3 Vapor 

1 0.709334 0.780779 0.813902 0.017095 0.002395 -0.02523 1 
2 0.98102 1.426941 0.862241 0.051286 0.002928 -0.02 1 
3 0.819849 1.15167 1.282911 0.020083 0.001397 -0.02954 1 
4 0.684759 0.707817 1.247191 0.006141 0.000133 -0.04913 1 
5 0.588205 1.25645 0.640691 0.004149 0.003726 -0.06888 1 

                
1 1.119915 1.19082 0.861281 0.004009 0.047827 0.048989 2 
2 1.066997 1.007185 0.820879 0.005065 0.052047 -0.01243 2 
3 1.303884 1.265177 1.022068 0.006682 0.068927 0.019174 2 
4 0.889723 0.854844 1.288982 0.003869 0.037277 0.069532 2 
5 0.934744 0.869599 1.102297 0.002814 0.02954 0.116308 2 

                
1 0.420603 1.231845 1.383607 -0.00148 0.18234 0.172004 3 
2 0.872359 0.556045 1.755483 0.047163 0.0074 0.127032 3 
3 0.717784 0.894251 1.192714 0.050779 0.01574 0.025969 3 
4 0.78837 0.787867 1.704366 0.061628 0.00834 0.037089 3 
5 0.50449 1.176451 1.170101 0.007793 0.03008 0.062496 3 

Sensor
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 Tables 21 and 22 show the results from Fisher’s and quadratic analysis using the 

features in Table 20.  Fisher’s approach results in an APER of 66.7% and quadratic 

analysis results in an APER of 73.3%, which demonstrates that the models built on the 

initial data are insufficient in classifying this new data.  The results of the neural network, 

in Table 23, show further inconsistencies with an APER of 60.0%.   

Table 21.  Phase four Fisher's analysis confusion matrices 
Training Data:     

Actual 
Group # of Cases   Predicted   

    V1 V2 V3 
V1 7 7 0 0 
V2 7 0 7 0 
V3 7 0 0 7 

Test Data:     
Actual 
Group # of Cases   Predicted   

    V1 V2 V3 
V1 5 0 0 5 
V2 5 0 1 4 
V3 5 0 1 4 

 
Table 22.  Phase four quadratic discriminant analysis confusion matrices 

Training Data:     
Actual 
Group # of Cases   Predicted   

    V1 V2 V3 
V1 7 7 0 0 
V2 7 0 7 0 
V3 7 0 0 7 

Test Data:     
Actual 
Group # of Cases   Predicted   

    V1 V2 V3 
V1 5 0 2 3 
V2 5 0 3 2 
V3 5 0 4 1 

 



 

 81

Table 23. Phase four neural network confusion matrices 
Training Data:     

Actual 
Group # of Cases   Predicted   

    V1 V2 V3 
V1 7 7 0 0 
V2 7 0 7 0 
V3 7 0 0 7 

Test Data:     
Actual 
Group # of Cases   Predicted   

    V1 V2 V3 
V1 5 0 0 5 
V2 5 0 1 4 
V3 5 0 0 5 

  

The phase two methods used to build models were also applied to this data.  

Using Equation 55 and a neural network, the third sensor was predicted according to 

vapor.  Once again, THF was only predicted using a neural network.  The predicted 

versus actual data graphs are located in Appendix E. 

Table 24 includes the RMSE’s that resulted from the regression analysis and 

neural network.  When these results are compared to the results of phase three, we see 

that the models’ prediction performance for phase three cyclohexane and THF data and 

phase two ethanol data is good.  On average, the models predicted phase four data better. 
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Table 24.  Phase four RMSE's 

                         RMSE 
Vapor Neural Network Regression 

Cyclohexane     
Observation 1 12.110 9.422 
Observation 2 6.951 3.691 
Observation 3 2.859 1.456 
Observation 4 1.319 3.108 
Observation 5 1.682 2.638 

Ethanol     
Observation 1 7.278 9.649 
Observation 2 12.572 13.238 
Observation 3 8.933 8.461 
Observation 4 7.546 5.910 
Observation 5 10.674 7.338 

THF     
Observation 1 18.398 - 
Observation 2 7.062 - 
Observation 3 6.339 - 
Observation 4 10.405 - 
Observation 5 8.218 - 

 

 

4.3 Summary 

 
In phase one, Fisher’s approach, quadratic discriminant scores, and neural networks 

were used to classify the initial data set by vapor.  We were able to accurately classify the 

data using two data features.  Phase two consisted of using the initial data set to predict 

sensor three output from sensors one and two.  Least squares regression and neural 

networks were able to effectively predict the sensor three data using sensors one and two 

and time as variables.  During phase three, the initial data set was once again used to 

develop classification and prediction models, but data from an “aged” sensor was used to 



 

 83

validate these models.  The models based on the initial data set poorly classified and 

predicted the “aged” sensor data.  Lastly, in phase four, the new sensor data was used to 

validate the models built in phase three.  These models also performed poorly for the 

different sensor data set. 
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5. Conclusions 

5.1 Introduction 

 
The goal of this thesis was to develop models that could classify carbon nanotube 

polymer composite sensor data by vapor.  Additionally, models were built to predict 

sensor three data based on two other sensors (sensors one and two).  Three sets of 

detection data from three different sensor sets were used to accomplish this:  

1. PI, PVAc, PI-PVAc sensors with approximately 20 experiments conducted 

on them 

2. Same set of sensors as 1., but seven to nine months older and about 50 

experiments conducted on them 

3. Different and new set of the three sensors 

The data from the three sensors was generated by Dr. Wei Chen at The University of 

Dayton. 

5.2 Literature Review Findings 

The literature review began by describing the equipment that the Air Force 

currently uses for chemical detection, as well as the equipment that is being developed 

and will soon be fielded.  It discussed the technology that each uses for detection along 

with its capability, advantages, and disadvantages.   

The literature review continued with a short discussion on carbon nanotubes before 

moving into the topic of carbon black polymer composite sensors and their use in 

chemical detection research.  Included in this section were several plots and other 

information that showed that the carbon black sensors could discriminate between 
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various gases.  Next, carbon nanotubes as sensors with polymer composites were 

discussed.  This portion described how they were manufactured and highlighted their 

ability to detect different chemicals. 

The literature review then described various multivariate analysis techniques.  It 

began by describing Fisher’s discriminant function and quadratic discriminant scores 

along with the assumptions needed to use these techniques.  It continued with a 

description of neural networks and signal-to-noise ratios.   

The literature review ended with a discussion on regression analysis.  This section 

focused on least squares fitting, methods to ensure model accuracy and adequacy, and 

concluded with a discussion on weighted least squares.  

5.3 Methodologies Employed 

The methodology was separated into four phases based on the data and analysis 

technique being applied.  The first phase consisted of classifying the first set of data by 

vapor using Fisher’s method, quadratic discriminant scores, and neural networks.  This 

was done by calculating specific features that represented each observation.  It was found 

that a single feature was not enough to classify the data, so another feature was developed 

to further explain the observations.  This added feature allowed the above methods to 

accurately classify the vapors in most instances.  In the second phase, sensor one and two 

data were used to predict sensor three using regression analysis and neural networks.  

Phase three included performing the same phase one and two analysis on the second set 

of data.  During this phase, the data was used to validate the models developed from 

phase one and two data.  It was shown that these models could not accurately classify or 

predict the new data, showing that the age of the sensor had an impact on the output of 
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the sensor.  During phase four, the same analysis was conducted, but on data set three.  

This phase used the same techniques in phase three to prove that there were detection 

inconsistencies between different sets of sensors of the same types. 

 

5.4 Relevance of the Research 

This research can be applied to the Global War on Terrorism and homeland 

defense.  The threat of chemical weapons attacks is a reality and the best way to combat it 

is through contamination avoidance.  The technology discussed in this thesis directly 

contributes to avoidance through the detection and identification of a chemical vapor.  

Development of equipment using this technology could lead to faster and more accurate 

chemical detection in the field. 

5.5 Recommendations for Future Research 

Future research could include similar analysis conducted on much larger data sets.  

Currently, the models are based on small data sets, which results in great sensitivity to 

any changes in sensor output.  A larger data set one may account for these changes and 

lead to the correct classification of phase three and four data sets.   

Another area of research would be to analyze data on sensors that have had 

collected residuals removed from the sensors before each detection.  The method of 

residual removal could be anything, such as flash heat.  The important factor would be 

that the sensor begins fresh at each detection cycle.  This method could alleviate the 

differences in output from new and aged sensors. 

More research should also be conducted to further examine the differences in 

different sets of sensors.  This is important in determining the detection consistencies 
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between sensors.  If the sensors have such diverse characteristics that they require 

different classification algorithms, this capability will be difficult to field. 

The last area of research suggested is to examine the capability of the sensors to 

quantify the concentration of a chemical vapor.  This is an important capability in the 

field and is one that most current USAF detectors do not have, but new generation 

detectors in development boast this capability.  For this technology to be a viable option, 

it will also need to possess the ability to measure concentration. 
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Appendix A.  Phases One and Two Raw Data 

 Cyclohexane-PI Cyclohexane-PVAc Cyclohexane-PI/PVAc 

time (s) Change of  
Relative Resistance (%)

Change of  
Relative Resistance (%) 

Change of  
Relative Resistance (%) 

0 0 0 0 
10 -0.025 0.13643 0.11751 
20 -0.025 -0.13643 0.11751 
30 0 -0.13643 0.11751 
40 0 -0.27285 0.11751 
50 -0.05 0 0.23502 
60 0 0.13643 0.11751 
70 -0.025 0 0 
80 -0.025 -0.13643 0.23502 
90 -0.05 -0.27285 0.11751 
100 0 -0.13643 0.11751 
110 -0.025 -0.13643 0 
120 3.075 0 5.2879 
130 10.1 4.7749 20.68155 
140 15.75 6.95771 30.08226 
150 20.675 7.63984 36.07521 
160 25.325 8.45839 40.30552 
170 29 8.86767 43.12573 
180 32.05 9.82265 45.3584 
190 35.375 10.23192 46.651 
200 38.775 11.05048 47.9436 
210 40.7 10.91405 48.29612 
220 44.55 10.6412 49.00118 
230 47.375 10.77763 49.58872 
240 24.1 8.18554 39.48296 
250 11.475 4.63847 27.61457 
260 8.275 2.31924 22.56169 
270 6.5 1.90996 20.56404 
280 5.175 1.50068 19.62397 
290 4.45 1.09141 18.56639 
300 3.375 0.81855 17.2738 
310 2.775 0.5457 15.39365 
320 2.4 0.27285 14.57109 
330 2.15 0.13643 14.10106 
340 1.975 -0.13643 13.74853 
350 1.8 -0.27285 13.2785 
360 9.625 -0.13643 26.79201 
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 Cyclohexane-PI Cyclohexane-PVAc Cyclohexane-PI/PVAc 

time (s) Change of  
Relative Resistance (%)

Change of  
Relative Resistance (%) 

Change of  
Relative Resistance (%) 

370 22.35 4.63847 35.37015 
380 28.8 7.77626 38.30787 
390 33.25 8.18554 41.24559 
400 37.8 9.27694 42.6557 
410 40.2 9.41337 43.71328 
420 43 9.82265 44.65335 
430 47 9.95907 46.06345 
440 48.45 9.68622 48.29612 
450 51.275 10.0955 48.53114 
460 55.075 9.95907 49.11868 
470 56.425 10.0955 49.23619 
480 30.575 7.77626 39.36545 
490 9.425 4.7749 28.20212 
500 7.075 3.54707 21.97415 
510 6 1.36426 19.9765 
520 5.35 0.95498 18.91892 
530 4.925 0.40928 17.2738 
540 4.35 0.13643 15.9812 
550 3.825 0.13643 14.92362 
560 3.625 0 13.98355 
570 3.55 -0.13643 13.74853 
580 3.125 -0.13643 13.396 
590 2.95 -0.27285 13.04348 
600 5.175 0.13643 17.03878 
610 21.975 4.36562 29.61222 
620 32.85 6.82128 33.60752 
630 35.15 7.77626 35.48766 
640 40.425 8.04911 37.60282 
650 43.1 8.86767 40.18801 
660 46.575 9.27694 42.53819 
670 48.95 9.5498 44.0658 
680 50.675 9.5498 46.53349 
690 53.45 9.82265 47.59107 
700 55.25 10.0955 48.17861 
710 57.125 10.50477 48.64865 
720 30.85 8.45839 37.72033 
730 11.525 4.2292 25.49941 
740 8.55 3.54707 21.03408 
750 7.05 2.04638 18.80141 
760 5.425 1.36426 16.80376 
770 4.6 0.81855 15.51116 
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 Cyclohexane-PI Cyclohexane-PVAc Cyclohexane-PI/PVAc 

time (s) Change of  
Relative Resistance (%)

Change of  
Relative Resistance (%) 

Change of  
Relative Resistance (%) 

780 4.25 0.27285 13.396 
790 3.725 0.13643 12.69095 
800 3.525 0 12.22092 
810 3.4 -0.13643 11.86839 
820 3.475 0.13643 11.04583 
830 3.225 0.27285 10.6933 
840 5.425 0.40928 18.09636 
850 24.375 5.72988 28.55464 
860 30.95 6.54843 32.19741 
870 36.1 7.23056 33.72503 
880 39.45 7.63984 35.60517 
890 42.225 8.32196 37.3678 
900 44.1 8.59482 40.18801 
910 46.55 9.14052 42.89072 
920 48.275 9.5498 44.65335 
930 50.6 9.27694 46.76851 
940 52.075 9.41337 48.0611 
950 54.85 9.68622 49.70623 
960 29.275 7.63984 36.66275 
970 12 5.45703 26.43948 
980 8.05 3.13779 22.32667 
990 6.625 1.90996 19.62397 

1000 4.975 1.22783 17.3913 
1010 4.75 0.5457 16.56874 
1020 4.15 0.40928 13.74853 
1030 3.45 0.13643 12.22092 
1040 3.05 0.27285 11.51586 
1050 2.825 -0.13643 10.92832 
1060 2.625 -0.27285 10.6933 
1070 2.45 -0.40928 10.34078 
1080 12.175 -0.40928 13.63102 
1090 27.15 4.09277 33.49001 
1100 32.95 5.59345 36.07521 
1110 35.375 6.13915 37.95535 
1120 38.65 6.41201 41.71563 
1130 40.35 6.82128 43.83079 
1140 42.725 7.36698 46.29847 
1150 47.8 8.04911 48.41363 
1160 48.625 8.45839 49.23619 
1170 50.925 9.27694 49.70623 
1180 52.3 9.5498 50.52879 
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 Cyclohexane-PI Cyclohexane-PVAc Cyclohexane-PI/PVAc 

time (s) Change of  
Relative Resistance (%)

Change of  
Relative Resistance (%) 

Change of  
Relative Resistance (%) 

1190 52.7 9.82265 50.99882 
1200 26.275 7.09413 40.30552 
1210 10.65 5.18417 29.84724 
1220 7.85 4.63847 25.3819 
1230 5.925 2.72851 21.2691 
1240 5.125 1.77353 19.9765 
1250 4.575 1.22783 18.6839 
1260 3.45 0.68213 16.21622 
1270 3.1 0.13643 14.45358 
1280 2.875 0.27285 13.396 
1290 3.15 0 12.57344 
1300 2.9 -0.40928 11.75088 
1310 2.575 -0.5457 11.28085 
1320 12.45 -0.5457 17.2738 
1330 26.125 4.36562 33.3725 
1340 34.725 5.3206 38.19036 
1350 37.175 6.82128 42.53819 
1360 39.25 7.50341 45.94595 
1370 42.575 7.91269 47.59107 
1380 45.375 8.18554 49.82374 
1390 49.075 8.45839 50.88132 
1400 52.275 8.73124 50.29377 
1410 54.45 9.14052 50.99882 
1420 55.25 9.27694 51.82139 
1430 56.475 9.68622 51.70388 
1440 29.675 7.09413 34.31257 
1450 10.075 5.72988 30.31727 
1460 6.525 4.7749 25.96945 
1470 5.35 3.00136 22.56169 
1480 4.525 2.18281 20.79906 
1490 3.85 1.36426 19.50646 
1500 3.55 0.95498 18.56639 
1510 3.175 0.81855 16.92127 
1520 2.875 0.40928 15.62867 
1530 2.775 0.27285 14.92362 
1540 2.55 0 13.98355 
1550 2.425 -0.40928 13.16099 
1560 10.775 -0.13643 16.80376 
1570 24.55 4.09277 29.49471 
1580 34.2 5.8663 37.83784 
1590 36.475 7.09413 43.24324 
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 Cyclohexane-PI Cyclohexane-PVAc Cyclohexane-PI/PVAc 

time (s) Change of  
Relative Resistance (%)

Change of  
Relative Resistance (%) 

Change of  
Relative Resistance (%) 

1600 39.15 7.63984 45.47591 
1610 42.025 8.18554 47.00353 
1620 44.575 8.73124 48.53114 
1620 46.125 9.27694 49.47121 
1640 48.925 9.68622 50.76381 
1650 50.475 9.82265 51.23384 
1660 54.95 9.5498 51.82139 
1670 56.175 9.95907 52.40893 
1680 28.85 6.54843 34.78261 
1690 11 5.72988 26.08696 
1700 6.8 4.36562 23.14924 
1710 5.275 2.45566 19.85899 
1720 4.175 1.90996 18.56639 
1730 3.3 1.50068 17.74383 
1740 2.875 1.22783 17.03878 
1750 2.725 0.81855 15.9812 
1760 2.525 0.27285 15.51116 
1770 2.375 0.13643 15.15864 
1780 2.25 0 14.6886 
1790 2.125 -0.27285 14.45358 
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 Ethanol-PI Ethanol-PVAc Ethanol-PI/PVAc 

time (s) Change of  
Relative Resistance (%)

Change of  
Relative Resistance (%) 

Change of  
Relative Resistance (%) 

0 0 0 0 
10 -0.38023 -0.19582 -0.35211 
20 -1.14068 0.13055 -0.23474 
30 0 0.19582 0 
40 -0.76046 0.32637 -0.11737 
50 -0.38023 0 -0.46948 
60 -0.76046 0.06527 -0.11737 
70 -1.14068 -0.13055 -0.23474 
80 -0.38023 -0.06527 -0.23474 
90 -1.14068 0.13055 -0.23474 
100 -0.76046 0.06527 -0.23474 
110 -0.76046 0 -0.35211 
120 -1.14068 25.2611 -0.23474 
130 5.32319 47.78068 9.38967 
140 7.98479 62.59791 20.65728 
150 8.36502 68.60313 27.11268 
160 7.22433 70.36554 31.4554 
170 7.98479 71.86684 33.80282 
180 9.88593 72.78068 36.26761 
190 11.02662 73.49869 37.67606 
200 12.54753 75.2611 39.31925 
210 13.30798 76.50131 40.61033 
220 13.68821 77.21932 42.01878 
230 14.06844 78.85117 43.42723 
240 4.56274 64.81723 31.80751 
250 3.42205 53.5248 21.94836 
260 1.90114 36.8799 16.43192 
270 0.76046 28.39426 12.44131 
280 0 26.10966 10.0939 
290 -1.14068 23.62924 8.21596 
300 -1.52091 21.27937 6.69014 
310 -0.76046 17.55875 5.6338 
320 -1.14068 15.79634 4.81221 
330 -1.90114 14.68668 4.34272 
340 -1.52091 12.85901 3.52113 
350 -0.76046 11.6188 2.93427 
360 -0.38023 12.46736 3.05164 
370 6.08365 33.94256 16.43192 
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 Ethanol-PI Ethanol-PVAc Ethanol-PI/PVAc 

time (s) Change of  
Relative Resistance (%)

Change of  
Relative Resistance (%) 

Change of  
Relative Resistance (%) 

380 7.60456 47.7154 25.70423 
390 9.88593 56.72324 29.57746 
400 9.12548 57.63708 33.21596 
410 7.22433 58.48564 34.38967 
420 9.88593 60.18277 36.38498 
430 9.88593 64.55614 37.9108 
440 10.26616 66.12272 39.20188 
450 11.02662 63.57702 40.25822 
460 10.26616 68.14621 40.96244 
470 11.78707 68.86423 42.25352 
480 4.94297 57.04961 36.50235 
490 3.42205 49.02089 29.69484 
500 2.28137 39.81723 20.77465 
510 1.52091 36.68407 14.78873 
520 1.90114 32.3107 11.85446 
530 0.76046 30.09138 9.2723 
540 0.38023 26.95822 8.09859 
550 0 24.08616 6.57277 
560 0.38023 22.25849 5.75117 
570 0 19.77807 4.81221 
580 -0.76046 17.23238 4.22535 
590 -0.38023 15.86162 3.28638 
600 0 17.36292 3.40376 
610 3.42205 47.58486 7.39437 
620 4.94297 59.07311 20.65728 
630 5.70342 65.20888 26.17371 
640 7.22433 68.66841 29.81221 
650 7.98479 72.7154 32.62911 
660 7.22433 78.00261 34.74178 
670 8.36502 74.21671 36.03286 
680 9.12548 75.71802 37.32394 
690 9.88593 76.30548 38.61502 
700 11.40684 74.86945 39.31925 
710 11.78707 74.80418 40.14085 
720 2.6616 62.20627 36.26761 
730 2.28137 38.57702 30.51643 
740 1.90114 32.96345 18.30986 
750 0.76046 30.8094 13.14554 
760 0 28.26371 10.44601 
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 Ethanol-PI Ethanol-PVAc Ethanol-PI/PVAc 

time (s) Change of  
Relative Resistance (%)

Change of  
Relative Resistance (%) 

Change of  
Relative Resistance (%) 

770 -0.76046 24.21671 8.92019 
780 -0.38023 20.43081 7.15962 
790 -1.90114 20.953 5.98592 
800 -1.52091 17.55875 5.16432 
810 -1.90114 16.97128 4.10798 
820 -1.14068 16.12272 3.28638 
830 -1.90114 14.62141 2.93427 
840 -1.14068 16.44909 2.93427 
850 2.28137 44.58225 7.04225 
860 3.42205 52.61097 23.70892 
870 4.18251 63.6423 28.28638 
880 4.56274 69.84334 31.10329 
890 5.70342 72.06266 32.62911 
900 6.84411 73.04178 34.85915 
910 7.98479 74.93473 38.26291 
920 8.74525 75.65274 40.96244 
930 9.88593 77.08877 42.84038 
940 10.64639 77.80679 44.48357 
950 11.40684 78.72063 46.12676 
960 3.04183 71.34465 41.19718 
970 1.90114 57.5718 28.16901 
980 0.76046 44.71279 22.30047 
990 0 32.18016 20.07042 

1000 -0.76046 30.61358 17.84038 
1010 -0.38023 25.45692 15.84507 
1020 -1.14068 22.25849 13.96714 
1030 -1.52091 19.84334 12.55869 
1040 -1.14068 16.12272 11.26761 
1050 -1.90114 11.22715 9.85915 
1060 -2.6616 9.46475 7.98122 
1070 -3.42205 5.93995 5.98592 
1080 -2.28137 9.07311 6.10329 
1090 1.90114 30.15666 9.50704 
1100 3.80228 60.18277 18.66197 
1110 5.32319 71.80157 24.1784 
1120 6.08365 79.96084 27.46479 
1130 6.84411 76.82768 30.98592 
1140 7.60456 75.78329 33.33333 
1150 9.12548 73.89034 36.38498 
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 Ethanol-PI Ethanol-PVAc Ethanol-PI/PVAc 

time (s) Change of  
Relative Resistance (%)

Change of  
Relative Resistance (%) 

Change of  
Relative Resistance (%) 

1160 9.88593 73.2376 39.55399 
1170 10.64639 68.47258 42.37089 
1180 11.40684 66.44909 44.13146 
1190 12.1673 64.42559 45.07042 
1200 6.08365 65.99217 37.55869 
1210 3.80228 52.87206 27.8169 
1220 1.52091 42.10183 21.00939 
1230 0.76046 36.42298 16.90141 
1240 0.38023 31.52742 13.96714 
1250 -0.38023 24.34726 11.73709 
1260 -0.76046 23.62924 10.32864 
1270 -1.14068 22.19321 9.03756 
1280 -1.52091 14.42559 8.21596 
1290 -0.76046 10.11749 7.62911 
1300 -1.52091 7.5718 7.15962 
1310 -2.6616 6.39687 6.57277 
1320 -1.14068 10.11749 6.69014 
1330 1.14068 43.53786 14.08451 
1340 2.6616 57.50653 20.30516 
1350 4.18251 62.27154 23.47418 
1360 5.32319 63.90339 27.34742 
1370 6.84411 65.53525 29.92958 
1380 7.98479 67.29765 31.57277 
1390 8.74525 68.73368 35.79812 
1400 9.88593 69.97389 38.61502 
1410 11.02662 70.49608 41.5493 
1420 11.78707 72.32376 43.07512 
1430 12.54753 74.34726 43.89671 
1440 4.18251 53.91645 34.85915 
1450 1.90114 43.21149 23.59155 
1460 0.76046 31.39687 18.30986 
1470 -0.38023 27.67624 15.96244 
1480 0 22.45431 13.84977 
1490 -1.14068 20.75718 11.50235 
1500 -1.90114 19.38642 9.50704 
1510 -0.76046 17.88512 6.80751 
1520 -1.90114 15.86162 3.87324 
1530 -2.6616 13.77285 3.05164 
1540 -1.90114 9.8564 2.11268 
1550 -2.6616 8.28982 1.87793 
1560 -0.76046 9.5953 1.99531 
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 Ethanol-PI Ethanol-PVAc Ethanol-PI/PVAc 

time (s) Change of  
Relative Resistance (%)

Change of  
Relative Resistance (%) 

Change of  
Relative Resistance (%) 

1570 1.90114 27.2846 15.37559 
1580 4.56274 40.46997 22.53521 
1590 6.08365 48.49869 26.52582 
1600 7.60456 50.91384 28.28638 
1610 8.36502 57.96345 31.22066 
1620 9.12548 60.05222 33.21596 
1620 9.88593 63.05483 34.97653 
1640 10.26616 64.81723 36.03286 
1650 11.02662 68.21149 37.44131 
1660 11.40684 71.99739 39.08451 
1670 12.54753 75.19582 41.78404 
1680 5.32319 54.37337 23.59155 
1690 2.6616 39.49086 19.60094 
1700 1.52091 33.68146 17.723 
1710 0.76046 25.13055 15.61033 
1720 -0.38023 23.89034 14.55399 
1730 -0.38023 22.84595 12.55869 
1740 -1.14068 22.51958 11.38498 
1750 -1.90114 17.62402 8.09859 
1760 -2.28137 15.4047 7.39437 
1770 -1.52091 10.70496 5.39906 
1780 -2.6616 4.69974 4.46009 
1790 -3.42205 7.8329 3.40376 

 



 

 98

 
 THF-PI THF-PVAc THF-PI/PVAc 

time (s) Change of 
Relative Resistance (%)

Change of 
Relative Resistance (%) 

Change of 
Relative Resistance (%) 

0 0 0 0 
10 0.00281 0 -0.35211 
20 0.0212 0.15083 -0.23474 
30 0.02238 -0.15083 0 
40 0.02115 -0.15083 -0.11737 
50 0.01422 -0.15083 -0.46948 
60 -0.00805 0 -0.11737 
70 -0.00823 -0.15083 -0.23474 
80 -1.87E-04 0 -0.23474 
90 -0.00299 -0.15083 -0.23474 

100 0.0015 -0.15083 -0.23474 
110 -0.01123 -0.15083 -0.35211 
120 0.72179 0.75415 -0.23474 
130 4.65948 6.03318 9.38967 
140 5.78495 9.65309 20.65728 
150 5.77859 14.02715 27.11268 
160 5.79936 22.02112 31.4554 
170 5.77316 33.33333 33.80282 
180 5.76699 46.00302 36.26761 
190 5.80292 57.61689 37.67606 
200 5.83286 74.05732 39.31925 
210 5.89181 98.4917 40.61033 
220 5.95562 113.12217 42.01878 
230 6.08326 130.01508 43.42723 
240 6.31251 84.01207 31.80751 
250 5.65002 64.55505 21.94836 
260 4.86047 55.80694 16.43192 
270 4.54 52.33786 12.44131 
280 4.37146 49.17044 10.0939 
290 4.26105 45.24887 8.21596 
300 4.2122 41.93062 6.69014 
310 4.1555 41.3273 5.6338 
320 4.10797 39.66817 4.81221 
330 4.05931 38.15988 4.34272 
340 4.01234 37.40573 3.52113 
350 3.9779 35.89744 2.93427 
360 3.97248 110.10558 3.05164 
370 4.53353 156.71192 16.43192 
380 6.24682 208.29563 25.70423 
390 6.21706 228.50679 29.57746 
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 THF-PI THF-PVAc THF-PI/PVAc 

time (s) Change of 
Relative Resistance (%)

Change of 
Relative Resistance (%) 

Change of 
Relative Resistance (%) 

400 6.16915 241.93062 33.21596 
410 6.16635 266.36501 34.38967 
420 6.2165 284.01207 36.38498 
430 6.23971 289.44193 37.9108 
440 6.2878 298.64253 39.20188 
450 6.40159 288.98944 40.25822 
460 6.48 284.91704 40.96244 
470 6.51938 267.72247 42.25352 
480 6.53652 200.45249 36.50235 
490 5.80385 162.29261 29.69484 
500 5.10094 132.73002 20.77465 
510 4.9196 127.30015 14.78873 
520 4.97575 113.42383 11.85446 
530 4.93607 109.65309 9.2723 
540 4.87862 105.42986 8.09859 
550 4.81106 102.86576 6.57277 
560 4.77925 101.20664 5.75117 
570 4.76371 99.09502 4.81221 
580 4.70476 96.98341 4.22535 
590 4.61943 94.87179 3.28638 
600 4.54083 105.58069 3.40376 
610 4.54513 173.75566 7.39437 
620 4.54363 206.33484 20.65728 
630 5.25122 222.62443 26.17371 
640 6.53128 230.31674 29.81221 
650 6.66022 235.29412 32.62911 
660 6.86155 249.62293 34.74178 
670 7.03675 265.00754 36.03286 
680 7.15446 274.81146 37.32394 
690 7.27423 281.90045 38.61502 
700 7.46287 289.74359 39.31925 
710 7.66461 295.47511 40.14085 
720 7.87365 190.49774 36.26761 
730 7.13125 164.25339 30.51643 
740 6.40963 136.80241 18.30986 
750 6.15886 128.20513 13.14554 
760 5.96386 115.98793 10.44601 
770 5.85026 109.2006 8.92019 
780 5.76025 106.03318 7.15962 
790 5.67697 102.11161 5.98592 
800 5.61802 100.60332 5.16432 
810 5.62064 98.79336 4.10798 
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 THF-PI THF-PVAc THF-PI/PVAc 

time (s) Change of 
Relative Resistance (%)

Change of 
Relative Resistance (%) 

Change of 
Relative Resistance (%) 

820 5.58078 96.38009 3.28638 
830 5.52688 94.11765 2.93427 
840 5.48964 109.2006 2.93427 
850 5.72581 156.56109 7.04225 
860 7.07118 191.25189 23.70892 
870 7.28958 208.59729 28.28638 
880 7.53455 223.52941 31.10329 
890 7.56636 231.97587 32.62911 
900 7.62643 249.77376 34.85915 
910 7.69942 262.7451 38.26291 
920 7.81526 274.20814 40.96244 
930 7.85849 279.63801 42.84038 
940 7.9442 287.48115 44.48357 
950 7.78401 298.64253 46.12676 
960 7.8948 191.40271 41.19718 
970 7.30455 166.66667 28.16901 
980 6.55523 138.91403 22.30047 
990 6.23334 124.88688 20.07042 
1000 5.87029 114.93213 17.84038 
1010 5.74453 108.1448 15.84507 
1020 5.65507 104.67572 13.96714 
1030 5.5761 102.26244 12.55869 
1040 5.46924 99.09502 11.26761 
1050 5.4335 96.83258 9.85915 
1060 5.35078 95.32428 7.98122 
1070 5.27312 93.21267 5.98592 
1080 5.23812 103.92157 6.10329 
1090 6.19086 163.19759 9.50704 
1100 7.29107 175.86727 18.66197 
1110 7.40561 200.60332 24.1784 
1120 7.44977 222.17195 27.46479 
1130 7.50835 239.51735 30.98592 
1140 7.61913 253.39367 33.33333 
1150 7.71851 273.15234 36.38498 
1160 7.85699 277.37557 39.55399 
1170 7.9981 282.50377 42.37089 
1180 8.12105 287.17949 44.13146 
1190 8.17383 296.83258 45.07042 
1200 8.30614 195.77677 37.55869 
1210 7.77895 160.48265 27.8169 
1220 6.85541 136.95324 21.00939 
1230 6.45174 125.33937 16.90141 
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 THF-PI THF-PVAc THF-PI/PVAc 

time (s) Change of 
Relative Resistance (%)

Change of 
Relative Resistance (%) 

Change of 
Relative Resistance (%) 

1240 6.27115 117.64706 13.96714 
1250 6.19086 111.31222 11.73709 
1260 6.13622 106.6365 10.32864 
1270 6.02599 102.41327 9.03756 
1280 6.13734 100 8.21596 
1290 6.08619 95.77677 7.62911 
1300 6.01757 93.96682 7.15962 
1310 6.01813 92.76018 6.57277 
1320 6.16204 98.19005 6.69014 
1330 6.57432 161.99095 14.08451 
1340 7.32532 180.39216 20.30516 
1350 7.54783 198.79336 23.47418 
1360 7.656 224.88688 27.34742 
1370 7.72805 243.13725 29.92958 
1380 7.76922 260.78431 31.57277 
1390 7.85531 275.41478 35.79812 
1400 7.94963 282.50377 38.61502 
1410 8.06023 292.60935 41.5493 
1420 8.03216 298.94419 43.07512 
1430 8.09261 302.41327 43.89671 
1440 8.19647 194.72097 34.85915 
1450 8.16765 159.57768 23.59155 
1460 7.06126 133.63499 18.30986 
1470 6.74106 121.26697 15.96244 
1480 6.63271 117.3454 13.84977 
1490 6.59004 110.55807 11.50235 
1500 6.47345 105.27903 9.50704 
1510 6.42311 101.5083 6.80751 
1520 6.35405 98.34087 3.87324 
1530 6.30951 96.53092 3.05164 
1540 6.285 94.11765 2.11268 
1550 6.24476 92.00603 1.87793 
1560 6.57844 106.78733 1.99531 
1570 7.2849 161.2368 15.37559 
1580 7.49431 183.55958 22.53521 
1590 7.61146 202.71493 26.52582 
1600 7.70335 229.41176 28.28638 
1610 7.72412 252.63952 31.22066 
1620 7.76473 256.1086 33.21596 
1630 7.8525 269.98492 34.97653 
1640 7.97995 279.93967 36.03286 
1650 8.07483 290.04525 37.44131 
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 THF-PI THF-PVAc THF-PI/PVAc 

time (s) Change of 
Relative Resistance (%)

Change of 
Relative Resistance (%) 

Change of 
Relative Resistance (%) 

1660 8.18767 294.26848 39.08451 
1670 8.28312 297.73756 41.78404 
1680 7.57366 195.62594 23.59155 
1690 6.67968 162.59427 19.60094 
1700 6.37146 138.61237 17.723 
1710 6.21351 121.4178 15.61033 
1720 6.18618 111.61388 14.55399 
1730 6.12854 105.58069 12.55869 
1740 6.22099 102.71493 11.38498 
1750 6.11376 101.65913 8.09859 
1760 6.12274 99.69834 7.39437 
1770 6.09186 97.73756 5.39906 
1780 6.0331 95.02262 4.46009 
1790 5.94945 93.66516 3.40376 
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Appendix B.  Phase Three Raw Data 
 Cyclohexane-PI Cyclohexane-PVAc Cyclohexane-PI/PVAc 

time (s) Change of  
Relative Resistance (%) 

Change of  
Relative Resistance (%) 

Change of  
Relative Resistance (%) 

0 0 0 0 
10 -0.27487 0.00348 -0.14201 
20 -0.00598 0.00337 -0.19112 
30 0.86436 0.00532 -0.19571 
40 0.5856 0.00121 -0.23577 
50 0.2199 -0.0011 -0.27914 
60 0.2112 -3.91E-04 -0.30082 
70 0.30863 6.26E-04 -0.33815 
80 -0.16433 -0.00114 -0.3304 
90 0.81566 -0.00153 -0.3202 
100 0.10547 0.04971 -0.32049 
110 0.1712 0.00407 -0.39516 
120 4.60114 0.15727 15.30917 
130 27.01225 1.51934 25.75957 
140 29.77592 2.6002 33.7144 
150 32.18405 3.86527 38.80175 
160 34.92979 4.27392 40.644 
170 38.39558 5.35408 40.58513 
180 43.28951 6.27392 40.97713 
190 45.44368 6.67473 41.48112 
200 47.32298 7.39416 40.756 
210 49.40843 7.38946 41.46533 
220 52.00777 7.64702 41.14943 
230 54.55931 7.31783 41.28153 
240 19.88647 6.14749 32.85861 
250 10.84255 4.37788 24.47014 
260 5.53331 3.27133 21.78072 
270 3.58829 2.89596 19.24494 
280 1.23693 2.60827 13.45687 
290 0.34957 2.28887 4.86853 
300 -0.08157 2.45835 4.22209 
310 0.98895 2.54916 3.35797 
320 -0.3914 2.4607 2.00895 
330 0.22707 2.47166 1.82286 
340 -0.33762 2.6157 1.44853 
350 0.00896 2.4564 1.25784 
360 20.35853 3.34766 11.75965 
370 35.64386 5.18342 19.90401 
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 Cyclohexane-PI Cyclohexane-PVAc Cyclohexane-PI/PVAc 

time (s) Change of  
Relative Resistance (%) 

Change of  
Relative Resistance (%) 

Change of  
Relative Resistance (%) 

380 41.51479 6.46963 22.79446 
390 45.37496 6.62698 24.48019 
400 46.08605 7.22663 25.34603 
410 47.2931 8.51049 27.273 
420 47.32596 9.41076 30.34293 
430 46.93457 10.72201 38.14699 
440 50.64535 11.02106 39.74944 
450 54.2934 11.32911 40.08687 
460 58.07888 11.01401 43.72111 
470 58.59576 11.49311 47.65832 
480 16.19958 9.50626 40.52626 
490 8.87959 8.18757 26.23916 
500 4.91485 7.12447 20.13663 
510 2.85928 6.39291 9.74366 
520 1.49089 5.81674 4.97995 
530 0.25993 4.84523 3.1693 
540 0.20317 4.6507 1.98813 
550 -0.12847 4.92469 1.64481 
560 0.33463 4.6049 1.51257 
570 0.14341 4.24636 1.4211 
580 0.88437 4.05809 1.27507 
590 0.10457 4.1532 1.29704 
600 25.4885 5.89815 9.1133 
610 31.08455 8.56842 14.01399 
620 34.5862 9.0346 23.0802 
630 38.93158 9.47338 29.53309 
640 45.47356 9.87615 30.93882 
650 54.61607 10.04251 30.99052 
660 57.62773 10.44763 32.84568 
670 56.42068 10.56466 34.54291 
680 59.18733 10.2484 37.07151 
690 61.54765 10.77955 40.91969 
700 61.88527 10.23978 44.58982 
710 61.25067 10.05425 47.49606 
720 36.54019 6.82347 32.58292 
730 13.01763 6.11359 18.60022 
740 5.10607 5.969 8.1728 
750 3.65103 5.40692 5.7605 
760 1.98387 5.41514 3.78931 
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 Cyclohexane-PI Cyclohexane-PVAc Cyclohexane-PI/PVAc 

time (s) Change of  
Relative Resistance (%) 

Change of  
Relative Resistance (%) 

Change of  
Relative Resistance (%) 

770 0.65432 5.07147 3.38525 
780 -0.1213 4.76147 3.53071 
790 0.61906 2.56756 3.39875 
800 -0.5853 1.28425 3.60537 
810 -0.87093 0.93886 3.37334 
820 0.4389 1.49507 3.2945 
830 -0.196 1.98473 3.46523 
840 25.81416 1.85243 13.12949 
850 36.81506 2.11625 20.86031 
860 45.57813 3.29756 36.09223 
870 50.76188 5.66721 41.47682 
880 53.3911 7.42234 42.7246 
890 54.44876 8.51597 44.56111 
900 54.26352 9.21661 43.67229 
910 56.92262 10.31572 43.6048 
920 59.12758 10.98152 43.67229 
930 58.8769 10.93377 44.56111 
940 59.13953 11.15062 44.40747 
950 60.57783 11.27979 44.7534 
960 25.40185 9.84562 27.96366 
970 17.01225 7.75818 24.6166 
980 10.36719 6.53264 21.52944 
990 5.73648 5.98505 19.69294 

1000 3.50164 4.4041 18.31018 
1010 1.81655 2.87522 14.76927 
1020 1.90917 2.21058 5.92276 
1030 -0.25695 1.56083 5.00235 
1040 1.00388 1.92132 4.30997 
1050 -0.50194 1.44035 3.7784 
1060 0.08664 1.26386 3.04121 
1070 0.55244 1.31568 2.75346 
1080 18.72722 4.31916 2.354 
1090 24.87601 5.18812 7.1088 
1100 30.69615 6.54556 16.18793 
1110 33.13415 7.20784 27.76981 
1120 35.88288 8.47135 38.09099 
1130 38.50612 8.9571 45.40397 
1140 42.3663 8.41271 51.87266 
1150 46.99432 8.47957 57.8876 
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 Cyclohexane-PI Cyclohexane-PVAc Cyclohexane-PI/PVAc 

time (s) Change of  
Relative Resistance (%) 

Change of  
Relative Resistance (%) 

Change of  
Relative Resistance (%) 

1160 50.88886 8.59112 58.98749 
1170 53.2686 8.58251 59.02338 
1180 55.88497 8.74495 58.0398 
1190 58.14759 8.65492 57.8876 
1200 25.366 4.39745 50.76415 
1210 12.17209 2.58361 39.14206 
1220 6.8778 2.37459 33.66558 
1230 4.42187 1.90332 21.33129 
1240 2.68898 1.64929 15.45276 
1250 1.83956 1.30977 11.23698 
1260 0.39767 1.60788 6.85465 
1270 -0.6833 1.38508 6.53301 
1280 0.20795 1.6316 5.95004 
1290 0.99821 1.10897 4.34184 
1300 -0.3173 0.98505 3.81485 
1310 0.30714 0.97002 3.40851 
1320 13.80341 2.00219 10.74591 
1330 22.01972 4.41232 23.07158 
1340 30.23304 4.66792 31.65246 
1350 35.07918 5.11688 39.07314 
1360 38.91455 5.59167 42.87824 
1370 43.75859 6.39878 46.73217 
1380 47.67254 6.69274 49.61257 
1390 49.84165 7.76444 53.64741 
1400 53.87093 8.13042 55.16659 
1410 59.93427 7.94411 57.66791 
1420 58.63161 8.02669 57.62196 
1430 62.20496 8.16213 58.63569 
1440 25.35405 5.03468 52.53316 
1450 19.92232 3.022 36.93653 
1460 12.65611 1.81016 18.24987 
1470 6.02928 1.50579 13.10938 
1480 2.62324 1.2051 5.99312 
1490 1.69704 1.08365 2.75949 
1500 0.84255 1.21505 2.13115 
1510 0.50792 1.38383 2.29398 
1520 0.60353 1.0303 2.3583 
1530 1.00388 1.06325 2.29225 
1540 -0.57365 1.10717 2.58747 
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 Cyclohexane-PI Cyclohexane-PVAc Cyclohexane-PI/PVAc 

time (s) Change of  
Relative Resistance (%) 

Change of  
Relative Resistance (%) 

Change of  
Relative Resistance (%) 

1550 0.02091 1.55817 2.12914 
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 Ethanol-PI Ethanol-PVAc Ethanol-PI/PVAc 

time (s) Change of 
Relative Resistance (%)

Change of 
Relative Resistance (%) 

Change of 
Relative Resistance (%) 

0 0 0 0 
10 0 -0.09963 0.04168 
20 -0.01852 0.16028 0.06252 
30 -0.01852 -0.40286 0.06252 
40 0 0.37687 0.08336 
50 -0.01852 0.08332 0.08336 
60 -0.03705 0.55014 0.04168 
70 0 0.59346 0.06252 
80 -0.11114 0.55014 0.04168 
90 -0.05557 0.03355 0 

100 -0.0741 0.01696 0 
110 -0.03705 0.03032 0.02084 
120 2.98237 5.40178 12.77462 
130 7.00207 8.34741 20.13096 
140 9.35522 11.11977 25.57008 
150 11.8933 14.91423 28.07082 
160 12.5243 17.17804 30.50904 
170 13.52816 21.73273 33.0723 
180 14.40776 26.90882 35.78144 
190 14.01874 34.55491 38.42805 
200 15.95392 38.71345 42.15803 
210 15.99096 39.36322 43.92968 
220 15.95392 39.96968 45.6805 
230 16.00948 39.3199 20.10262 
240 8.75852 24.72168 17.10173 
250 7.60077 16.70782 15.20534 
260 6.75793 13.93546 13.97581 
270 6.21147 12.50596 12.82963 
280 5.70206 11.76955 12.01689 
290 5.34084 10.59996 11.32919 
300 5.0352 9.34373 10.68317 
310 4.74807 9.17046 10.1205 
320 4.498 8.91055 9.74539 
330 4.33128 8.21746 9.26608 
340 4.11826 8.30409 8.93151 
350 3.96956 8.04418 5.40963 
360 4.50046 12.89582 12.84934 
370 5.08396 19.65345 19.87225 
380 6.14909 23.63873 21.42104 
390 7.34389 27.58068 23.54667 
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 Ethanol-PI Ethanol-PVAc Ethanol-PI/PVAc 

time (s) Change of 
Relative Resistance (%)

Change of 
Relative Resistance (%) 

Change of 
Relative Resistance (%) 

400 8.25157 30.9595 25.60978 
410 9.52046 33.49144 29.96524 
420 11.38213 36.22049 31.56988 
430 14.16073 40.58631 35.32099 
440 15.79024 42.98895 32.4243 
450 14.7066 45.70804 31.56988 
460 15.5581 49.43513 33.84139 
470 14.03972 50.45267 32.50766 
480 11.57663 31.9125 26.27665 
490 9.5581 20.56314 17.29751 
500 8.68777 15.40827 12.58911 
510 8.06751 11.46632 9.15191 
520 7.58589 10.34005 8.94351 
530 7.14161 9.9935 9.86045 
540 6.03973 8.95387 10.02717 
550 5.5584 8.60732 9.03146 
560 5.14161 7.69764 9.52702 
570 5.08604 7.26446 9.88129 
580 4.7584 6.52805 9.90213 
590 4.39168 6.27182 10.04801 
600 6.47564 11.63959 14.57018 
610 8.55032 23.10158 21.73897 
620 9.73586 31.436 24.03132 
630 10.7269 38.45354 26.90717 
640 11.579 40.966 29.7205 
650 12.34775 44.20836 30.84584 
660 12.92199 46.73554 31.47102 
670 13.30173 49.27009 32.82559 
680 13.72778 51.39268 33.68001 
690 14.02417 52.09682 35.0971 
700 14.4317 52.86918 35.36801 
710 14.30203 52.40004 37.01433 
720 12.00742 36.46091 26.49571 
730 10.21059 27.58068 23.36979 
740 9.39554 18.6175 20.34835 
750 8.89539 14.54191 19.22302 
760 8.65458 11.59627 18.27287 
770 8.49712 9.90687 17.20189 
780 8.34893 9.0405 16.39097 
790 8.32115 8.30409 15.7851 
800 8.46008 7.87091 14.47342 
810 8.29336 7.77691 13.02677 
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 Ethanol-PI Ethanol-PVAc Ethanol-PI/PVAc 

time (s) Change of 
Relative Resistance (%)

Change of 
Relative Resistance (%) 

Change of 
Relative Resistance (%) 

820 8.36746 7.40286 12.03517 
830 8.33967 7.44813 11.76426 
840 9.57152 13.37232 23.24475 
850 10.65517 20.34655 30.20515 
860 11.0627 32.82218 31.72643 
870 11.39613 39.70977 33.14352 
880 12.04447 43.95495 35.99853 
890 12.60019 47.46372 35.74845 
900 13.07255 50.66927 36.89463 
910 13.42451 53.91813 37.22806 
920 13.94318 56.20663 37.39811 
930 14.00802 58.20663 37.64818 
940 14.10064 60.67576 36.66873 
950 14.14695 62.79835 38.12749 
960 12.99994 35.20468 33.35525 
970 12.29603 29.40004 29.24986 
980 10.92555 23.42214 24.66606 
990 10.74957 19.09032 20.83248 
1000 10.56997 17.44423 17.43653 
1010 10.35333 15.14836 15.70744 
1020 10.16259 13.02577 14.895 
1030 9.97186 11.59627 12.91584 
1040 9.84219 9.90687 11.93668 
1050 9.89776 8.82391 11.33263 
1060 9.79588 8.39073 11.87416 
1070 9.74957 8.79532 11.83248 
1080 11.37968 14.67186 11.7911 
1090 12.7406 23.50877 19.16947 
1100 13.03788 31.16959 32.50379 
1110 14.1299 38.23695 38.42073 
1120 14.90791 43.50509 40.15011 
1130 15.45437 47.85358 42.79614 
1140 16.50098 49.93286 45.12957 
1150 17.23267 51.57895 45.3588 
1160 17.79766 53.09508 45.52552 
1170 18.15887 53.44163 46.40078 
1180 18.55714 54.39463 47.38023 
1190 18.95541 55.30431 47.90122 
1200 16.26016 33.47195 38.25253 
1210 15.1302 23.85532 34.04354 
1220 14.55422 15.14836 32.04295 
1230 13.94496 12.33268 30.88449 
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 Ethanol-PI Ethanol-PVAc Ethanol-PI/PVAc 

time (s) Change of 
Relative Resistance (%)

Change of 
Relative Resistance (%) 

Change of 
Relative Resistance (%) 

1240 13.70415 10.45267 28.5431 
1250 13.43758 8.60732 26.447 
1260 13.04684 8.26078 23.60532 
1270 12.95422 8.1815 22.33456 
1280 12.92644 8.26446 21.2368 
1290 12.98201 8.0875 20.85539 
1300 12.9357 8.26078 18.9529 
1310 13.00053 8.39073 17.14685 
1320 14.02921 15.84146 27.56453 
1330 14.94615 22.64241 34.12897 
1340 15.53891 29.31341 36.62972 
1350 16.30766 35.98441 38.13016 
1360 16.99305 39.44986 40.21411 
1370 17.92851 43.52177 41.97447 
1380 18.02113 45.16786 42.70385 
1390 18.19711 47.20381 43.45407 
1400 18.39161 48.50336 44.05842 
1410 18.42866 49.3264 44.53773 
1420 18.53054 50.06281 44.93368 
1430 18.46571 51.31904 45.37131 
1440 17.14124 34.85813 39.88068 
1450 15.74268 27.97054 33.42102 
1460 14.82574 21.77605 29.35791 
1470 14.22371 18.39723 26.00335 
1480 13.91806 15.65086 24.31564 
1490 13.61242 13.45896 22.62794 
1500 13.39939 11.72623 21.14863 
1510 13.13079 10.38337 19.8152 
1520 13.07522 9.56032 18.35673 
1530 12.95481 9.47368 17.14833 
1540 12.86219 9.69028 16.93994 
1550 12.7881 9.77691 16.44009 
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 THF-PI THF-PVAc THF-PI/PVAc 

time (s) Change of 
Relative Resistance (%)

Change of 
Relative Resistance (%) 

Change of 
Relative Resistance (%) 

0 0 0 0 
10 0.00926 -0.09448 0.00578 
20 0.01389 -0.04973 -0.14456 
30 0.01389 0.17405 0.61871 
40 0.01852 -0.57684 0.11998 
50 0.01852 -0.04973 0.14167 
60 0.00926 0.69121 -0.00578 
70 0.01389 0.11935 -0.36284 
80 0.00926 0.04475 -0.31369 
90 0 -0.02486 0.0477 

100 0 0.00497 0.17781 
110 0.00463 98.93782 -0.27611 
120 2.8388 313.74667 55.4889 
130 4.47355 370.58519 59.87481 
140 5.68224 413.04849 61.75552 
150 6.23796 473.51514 63.05944 
160 6.77979 447.15957 65.29143 
170 7.3494 428.81012 66.79484 
180 7.95143 450.24267 69.58483 
190 8.53957 425.72702 71.56528 
200 9.14623 426.57238 73.06869 
210 9.76215 418.91435 73.76258 
220 10.37344 410.26177 75.45391 
230 4.46725 418.61598 76.87059 
240 3.80039 354.91507 59.04649 
250 3.37896 325.92394 48.69753 
260 3.10574 282.31293 29.20088 
270 2.85103 280.8211 24.17168 
280 2.67042 270.97506 20.60252 
290 2.5176 258.64264 18.60038 
300 2.37404 249.44305 17.40633 
310 2.249 239.84565 16.81074 
320 2.16564 230.79524 16.72256 
330 2.05913 223.63448 16.44935 
340 1.98478 222.29184 16.21082 
350 1.20214 221.4962 16.07349 
360 2.85541 227.29443 34.63051 
370 4.41606 386.79039 72.53383 
380 4.76023 418.6677 80.73031 
390 5.23259 464.74599 82.81196 
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 THF-PI THF-PVAc THF-PI/PVAc 

time (s) Change of 
Relative Resistance (%)

Change of 
Relative Resistance (%) 

Change of 
Relative Resistance (%) 

400 5.69106 483.55054 84.87915 
410 6.65894 461.08326 86.83069 
420 7.01553 446.01583 88.76778 
430 7.84911 464.11664 92.38175 
440 7.2054 446.46338 90.14109 
450 7.01553 434.3796 90.82052 
460 7.52031 446.06556 91.03735 
470 7.22392 442.38573 90.86978 
480 5.83926 362.62283 68.78975 
490 3.84389 338.05745 34.38476 
500 2.79758 331.99069 26.4427 
510 2.03376 323.33811 21.98161 
520 1.98745 316.12762 22.08136 
530 2.19121 306.97776 20.10379 
540 2.22826 302.40283 20.80924 
550 2.00699 296.53499 19.83636 
560 2.11712 296.08744 19.30149 
570 2.19584 295.2918 19.12802 
580 2.20047 295.24207 19.29282 
590 2.23289 293.15352 18.92419 
600 3.23782 443.28082 51.52943 
610 4.83088 464.68473 85.09599 
620 5.34029 486.17178 91.83243 
630 5.97937 494.53555 94.30438 
640 6.60456 490.72901 95.82225 
650 6.85463 481.2583 97.06546 
660 6.99356 488.91021 95.34521 
670 7.29458 498.41429 96.53059 
680 7.48445 486.76238 98.04846 
690 7.79935 468.19628 99.45068 
700 7.85956 471.92585 100.65051 
710 8.22541 474.41222 104.81381 
720 5.88794 455.86188 47.69429 
730 5.19329 398.22771 35.34174 
740 4.74408 315.97844 28.22366 
750 4.494 285.84358 27.82034 
760 4.38286 258.19509 24.07338 
770 4.26709 245.61404 19.86816 
780 4.20688 239.34837 19.81323 
790 4.17447 236.46418 20.07054 
800 4.1652 233.18216 19.67301 
810 4.18373 227.71214 20.34087 
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 THF-PI THF-PVAc THF-PI/PVAc 

time (s) Change of 
Relative Resistance (%)

Change of 
Relative Resistance (%) 

Change of 
Relative Resistance (%) 

820 4.23004 225.02685 18.62929 
830 4.16983 223.08748 17.81254 
840 5.1655 408.76994 37.221 
850 6.71225 470.33258 82.19729 
860 7.05032 430.30195 99.03146 
870 7.36523 421.54991 104.94391 
880 7.99967 414.4886 106.47623 
890 7.9441 408.37212 108.09529 
900 8.19881 408.17321 107.6327 
910 8.2729 405.18956 107.90737 
920 8.31069 398.52608 103.85972 
930 8.36626 402.60373 107.34551 
940 8.14861 425.57783 105.93848 
950 8.47278 399.86872 102.5876 
960 7.41228 283.95393 38.07101 
970 6.49997 254.61471 27.1944 
980 6.14801 239.14946 23.39829 
990 5.96277 227.86132 22.16376 
1000 5.87478 218.36337 22.7497 
1010 5.93499 217.41357 20.85887 
1020 5.97667 205.84199 19.64361 
1030 5.9813 202.75888 17.98601 
1040 5.98593 199.80507 17.1813 
1050 6.07392 192.65425 17.90602 
1060 5.97204 189.04404 16.93555 
1070 5.96277 188.7407 16.21468 
1080 6.1758 204.36508 90.45141 
1090 8.70433 398.67526 97.52515 
1100 9.44529 382.51382 99.07675 
1110 9.64905 388.77949 100.57053 
1120 9.81114 376.79516 102.57507 
1130 9.9547 382.21546 105.69754 
1140 10.02879 387.5363 105.89029 
1150 10.07973 389.22704 105.20604 
1160 10.11678 383.5581 104.27177 
1170 10.31128 385.74611 105.52407 
1180 10.52894 387.18821 104.19413 
1190 10.64472 394.3987 105.20604 
1200 9.56569 307.42531 35.22898 
1210 8.50056 260.97983 26.6393 
1220 8.00968 243.3763 22.38927 
1230 7.85222 235.9669 19.41425 
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 THF-PI THF-PVAc THF-PI/PVAc 

time (s) Change of 
Relative Resistance (%)

Change of 
Relative Resistance (%) 

Change of 
Relative Resistance (%) 

1240 7.67624 225.97168 19.00274 
1250 7.5651 223.78367 19.37859 
1260 6.86322 190.02367 18.82156 
1270 6.51879 180.66993 18.4804 
1280 5.87711 174.85181 18.17393 
1290 5.52342 171.11787 17.60148 
1300 5.46785 166.57716 16.53849 
1310 5.36597 168.29773 16.82954 
1320 6.12545 204.07169 25.05686 
1330 7.58422 349.94232 95.87718 
1340 8.13994 365.40757 96.59998 
1350 8.47337 364.71138 95.38568 
1360 8.93647 366.13578 101.55353 
1370 9.32766 361.52882 104.3676 
1380 9.48974 374.75634 104.64708 
1390 9.65646 376.29789 104.20377 
1400 9.79076 377.0438 107.26842 
1410 9.89727 386.24339 110.80529 
1420 9.98526 384.15483 110.05358 
1430 10.08251 384.50292 113.43626 
1440 8.86237 288.13104 41.90471 
1450 7.87134 253.96825 27.94804 
1460 7.41287 244.96758 23.38576 
1470 7.11185 232.13788 20.62372 
1480 6.95903 227.86132 17.63714 
1490 6.80621 218.81092 17.00204 
1500 6.6997 213.04253 17.53787 
1510 6.6256 212.94307 17.25743 
1520 6.52372 211.79934 16.25805 
1530 6.47741 210.75506 15.82052 
1540 6.4311 209.21351 16.53656 
1550 6.54224 208.08967 15.92302 
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Appendix C.  Phase Four Raw Data 
 Cyclohexane-PI Cyclohexane-PVAc Cyclohexane-PI/PVAc 

time (s) Change of  
Relative Resistance (%) 

Change of  
Relative Resistance (%) 

Change of  
Relative Resistance (%) 

0 0 0 0 
10 -0.04979 0 -0.07054 
20 -0.08299 0.01663 -0.09959 
30 -0.07469 0.01996 -0.08714 
40 -0.11618 0.00998 -0.12864 
50 -0.21577 0.02662 -0.23237 
60 -0.48133 0.0366 -0.49795 
70 -0.62241 0.01331 -0.63903 
80 -0.6556 0.02662 -0.66393 
90 -0.6556 0.02662 -0.67223 
100 -0.70539 0.02994 -0.70957 
110 -0.72199 0.04658 -0.37761 
120 5.48548 0.32604 6.10814 
130 5.54357 0.38592 7.80945 
140 11.73444 1.01803 8.37379 
150 14.55602 1.01138 8.60202 
160 15.48548 1.19436 8.80534 
170 16.29876 1.29084 8.95888 
180 16.59751 1.3108 9.02112 
190 16.96266 1.34407 8.94643 
200 17.03734 1.36403 9.05017 
210 17.27801 1.43057 9.11241 
220 17.39419 1.42391 9.2037 
230 17.45228 1.43057 7.75966 
240 17.47718 1.43057 7.13308 
250 17.53527 1.29084 6.77207 
260 15.29461 1.19103 6.4899 
270 14.6805 1.14113 6.28242 
280 14.18257 1.11784 6.10814 
290 13.91701 1.07459 5.9878 
300 13.56846 1.02801 5.86746 
310 13.361 0.94151 5.74298 
320 13.24481 0.97811 5.60604 
330 13.17012 0.94151 5.5687 
340 12.97925 0.90159 5.36122 
350 12.78008 0.89494 9.37383 
360 12.6805 0.87498 13.34495 
370 12.45643 1.03134 15.12926 
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 Cyclohexane-PI Cyclohexane-PVAc Cyclohexane-PI/PVAc 

time (s) Change of  
Relative Resistance (%) 

Change of  
Relative Resistance (%) 

Change of  
Relative Resistance (%) 

380 18.38174 1.04465 15.91352 
390 19.74274 1.08457 16.50276 
400 20.86307 1.1378 16.76418 
410 21.56846 1.15111 17.00071 
420 22.20747 1.15111 17.12934 
430 22.99585 1.16442 17.30777 
440 23.42739 1.20434 17.40736 
450 23.9668 1.19768 17.49035 
460 24.50622 1.27088 17.5277 
470 24.77178 1.29749 16.1293 
480 25.07884 0.94484 14.79314 
490 24.41494 0.79846 14.39064 
500 21.65145 0.73525 14.01303 
510 20.84647 0.71861 13.72671 
520 20.40664 0.75853 13.49019 
530 19.9917 0.74523 13.29101 
540 19.76763 0.76851 13.21632 
550 19.56846 0.74523 13.09598 
560 19.3112 0.76519 12.8719 
570 19.17012 0.76519 12.71837 
580 19.10373 0.77184 12.60218 
590 19.07054 0.75188 16.28283 
600 18.86307 0.97811 19.20412 
610 18.71369 1.01138 20.32035 
620 23.22822 1.09788 21.10461 
630 24.08299 1.14445 21.84738 
640 24.62241 1.15776 22.5611 
650 25.07054 1.15111 23.20428 
660 25.3029 1.21432 23.86406 
670 25.49378 1.21099 24.23752 
680 25.73444 1.24093 24.59023 
690 25.92531 1.26422 24.94294 
700 26.25726 1.2742 25.24586 
710 26.30705 1.28418 22.38682 
720 26.6888 0.90492 21.24569 
730 25.12033 0.81176 20.63156 
740 22.46473 0.71861 20.12117 
750 21.88382 0.66871 19.8307 
760 21.51867 0.67203 19.66887 
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 Cyclohexane-PI Cyclohexane-PVAc Cyclohexane-PI/PVAc 

time (s) Change of  
Relative Resistance (%) 

Change of  
Relative Resistance (%) 

Change of  
Relative Resistance (%) 

770 21.29461 0.6188 19.49044 
780 21.00415 0.59884 19.25391 
790 20.80498 0.58553 19.16262 
800 20.6805 0.57555 19.06718 
810 20.54772 0.57888 18.98004 
820 20.43983 0.59219 18.79331 
830 20.34855 0.57555 21.31209 
840 20.18257 0.59884 23.63584 
850 20.22407 0.73857 24.34541 
860 24.24066 0.85834 24.81431 
870 24.6556 0.89161 25.05083 
880 24.95436 0.92821 25.28736 
890 25.17012 0.97146 25.68156 
900 25.40249 0.99807 25.87244 
910 25.44398 1.01138 26.03842 
920 25.80083 1.00805 26.20856 
930 25.71784 1.00472 26.42848 
940 25.84232 1.01138 26.60276 
950 25.70954 1.00472 23.41591 
960 25.76763 0.94484 22.10465 
970 23.78423 0.93153 21.698 
980 21.72614 0.81842 21.33698 
990 20.89627 0.72526 21.15026 

1000 20.53942 0.58553 20.93033 
1010 20.32365 0.51234 20.74775 
1020 20.12448 0.46577 20.59837 
1030 19.91701 0.41254 20.47388 
1040 19.69295 0.41919 20.37014 
1050 19.63485 0.43915 20.29545 
1060 19.64315 0.40588 20.15436 
1070 19.46058 0.41254 23.9346 
1080 19.3527 0.49904 24.59853 
1090 20.45643 0.56557 24.80601 
1100 23.50207 0.68534 25.08403 
1110 24.16598 0.72526 25.37865 
1120 24.47303 0.80511 25.46164 
1130 24.53942 0.84503 25.75626 
1140 24.63071 0.87165 25.66911 
1150 24.6888 0.93819 25.7936 
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 Cyclohexane-PI Cyclohexane-PVAc Cyclohexane-PI/PVAc 

time (s) Change of  
Relative Resistance (%) 

Change of  
Relative Resistance (%) 

Change of  
Relative Resistance (%) 

1160 24.78838 0.93819 25.78945 
1170 24.78838 1.01138 25.68571 
1180 24.78008 1.02469 25.82265 
1190 24.83817 1.05795 22.22499 
1200 24.97925 1.0513 21.25814 
1210 24.42324 0.75853 20.85149 
1220 20.6722 0.69865 20.53612 
1230 20 0.55559 20.30375 
1240 19.49378 0.52565 20.06307 
1250 19.27801 0.48573 19.8307 
1260 19.11203 0.48573 19.69376 
1270 19.07884 0.519 19.63152 
1280 19.00415 0.47242 19.54853 
1290 18.90456 0.46577 19.3784 
1300 18.80498 0.43915 19.22486 
1310 18.73029 0.39923 22.98436 
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 Ethanol-PI Ethanol-PVAc Ethanol-PI/PVAc 

time (s) Change of  
Relative Resistance (%) 

Change of  
Relative Resistance (%) 

Change of  
Relative Resistance (%) 

0 0 0 0 
10 0.03165 0.03517 0 
20 0.1864 0 -0.01054 
30 0.04572 0 0.05268 
40 0.04572 -0.03517 0.07901 
50 0.03165 -0.07033 0.14749 
60 0.03869 -0.07033 0.15276 
70 0.02814 -0.14067 0.13169 
80 0.05276 -0.14067 0.12642 
90 0.0211 -0.17583 0.04741 
100 0.01055 -0.07033 0.03687 
110 0.00352 -0.07033 0.02634 
120 0.58735 5.486 0.33881 
130 0.98477 9.84667 4.21934 
140 1.10083 10.83134 10.59313 
150 1.11138 11.14784 12.81079 
160 1.19228 11.64017 14.17509 
170 1.2169 12.09734 14.31732 
180 1.25558 12.30834 14.49115 
190 1.27669 12.73034 14.85988 
200 1.31889 13.04684 15.27075 
210 1.34703 13.39851 16.17151 
220 1.45254 14.34801 16.0767 
230 1.45605 14.69968 16.94058 
240 0.9285 9.28401 16.48757 
250 0.67879 6.752 9.22882 
260 0.60141 5.908 6.32111 
270 0.54162 5.41567 5.06216 
280 0.49239 4.88817 4.06658 
290 0.4537 4.5365 3.56089 
300 0.39743 3.93867 3.03413 
310 0.37632 3.72767 2.53371 
320 0.33412 3.23534 2.20185 
330 0.29895 2.88367 1.70143 
340 0.28488 2.81334 1.64876 
350 0.29191 2.60234 1.3327 
360 0.83354 6.57617 1.10619 
370 1.3013 12.51934 3.9981 
380 1.41033 13.96118 10.09798 
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 Ethanol-PI Ethanol-PVAc Ethanol-PI/PVAc 

time (s) Change of  
Relative Resistance (%) 

Change of  
Relative Resistance (%) 

Change of  
Relative Resistance (%) 

390 1.48419 14.73484 14.85461 
400 1.51584 15.19201 17.04067 
410 1.60377 15.82501 22.26085 
420 1.64949 16.24701 23.12474 
430 1.74797 16.70418 23.19848 
440 1.81128 17.86468 24.26254 
450 1.80424 17.97018 24.12558 
460 1.88513 18.70868 23.32491 
470 1.90272 18.84935 22.50316 
480 1.30482 13.22268 23.43552 
490 1.15359 11.53467 19.17931 
500 1.03049 10.19834 15.64475 
510 0.92146 9.00267 14.63864 
520 0.88981 8.82684 14.09081 
530 0.83354 8.44001 13.74842 
540 0.84057 8.36967 12.92141 
550 0.84057 8.26417 12.37885 
560 0.79133 7.73667 12.05752 
570 0.8265 8.15867 12.00485 
580 0.84761 8.51034 11.80468 
590 0.81947 8.08834 11.32533 
600 1.39978 13.43368 11.24631 
610 1.64597 16.14151 14.7914 
620 1.74093 17.05584 17.10914 
630 1.84293 18.21635 16.91424 
640 1.88513 18.70868 17.67278 
650 1.91679 19.09551 17.80973 
660 1.99768 19.69335 17.94142 
670 2.15595 21.45168 16.66667 
680 2.21222 21.90885 16.11884 
690 2.19815 21.94401 17.64117 
700 2.25794 22.47151 18.63148 
710 2.3318 23.13968 18.90013 
720 1.66708 16.73934 18.85272 
730 1.38571 13.89084 18.58407 
740 1.31186 13.04684 15.13906 
750 1.21338 12.09734 13.07944 
760 1.17469 11.71051 12.61589 
770 1.15711 11.42917 12.09966 
780 1.07621 10.69067 11.29899 
790 1.00236 10.05767 11.43595 



 

 122

 Ethanol-PI Ethanol-PVAc Ethanol-PI/PVAc 

time (s) Change of  
Relative Resistance (%) 

Change of  
Relative Resistance (%) 

Change of  
Relative Resistance (%) 

800 1.00236 9.81151 11.04088 
810 1.02346 10.19834 10.54572 
820 1.01642 10.05767 10.32975 
830 1.00939 9.88184 10.06637 
840 1.27317 11.11267 9.20775 
850 1.93437 18.99001 9.41846 
860 1.97306 19.41201 14.9863 
870 2.03637 20.25601 15.57627 
880 2.19815 21.31101 16.57712 
890 2.24035 22.15501 17.88348 
900 2.25794 22.43635 16.12937 
910 2.38104 23.28035 16.18732 
920 2.32828 23.21002 15.75011 
930 2.41269 23.91335 17.27771 
940 2.45841 24.37052 17.78866 
950 2.45138 24.30018 19.60598 
960 1.89217 19.06035 20.15908 
970 1.7339 17.30201 19.83776 
980 1.55101 15.54368 16.1083 
990 1.50881 14.98101 14.09608 

1000 1.4455 14.38318 13.26907 
1010 1.4033 13.99634 11.9469 
1020 1.38923 13.75018 11.03561 
1030 1.37516 13.75018 10.51938 
1040 1.26965 12.51934 9.84513 
1050 1.29075 12.73034 9.77665 
1060 1.26965 12.66001 9.48694 
1070 1.28372 12.83584 9.02339 
1080 1.97306 18.91968 8.51243 
1090 2.36697 23.52652 8.67046 
1100 2.49358 24.68702 9.92941 
1110 2.55689 25.32002 17.23557 
1120 2.59206 25.81235 19.86936 
1130 2.62723 26.09368 19.50063 
1140 2.6835 26.65635 18.63148 
1150 2.73977 27.21902 21.97113 
1160 2.78198 27.85202 20.52255 
1170 2.81012 28.02785 24.20459 
1180 2.83825 28.16852 24.81563 
1190 2.82418 28.13335 24.4469 
1200 2.24035 22.57702 22.77708 
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 Ethanol-PI Ethanol-PVAc Ethanol-PI/PVAc 

time (s) Change of  
Relative Resistance (%) 

Change of  
Relative Resistance (%) 

Change of  
Relative Resistance (%) 

1210 2.07154 20.67801 22.10282 
1220 2.0012 20.00985 22.70333 
1230 1.93085 19.30651 17.9941 
1240 1.87458 18.53285 17.15655 
1250 1.80424 17.97018 16.22419 
1260 1.79017 17.79435 15.26022 
1270 1.74797 17.58335 15.07585 
1280 1.76204 17.54818 14.99157 
1290 1.7339 17.19651 14.94943 
1300 1.72687 17.02068 14.87042 
1310 1.74797 17.16134 14.34893 
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 THF-PI THF-PVAc THF-PI/PVAc 

time (s) Change of  
Relative Resistance (%) 

Change of  
Relative Resistance (%) 

Change of  
Relative Resistance (%) 

0 0 0 0 
10 -0.72324 0.046 0.04223 
20 -0.76143 0.092 0.03871 
30 -0.89895 0.393 0.02815 
40 -0.86839 0.532 0.02463 
50 -1.03392 0.601 0.02111 
60 -0.93206 0.671 0.02815 
70 -0.91678 0.74 0.02815 
80 -0.82765 0.532 0.0563 
90 -1.21982 0.671 0.00704 
100 -0.79963 0.763 -0.02463 
110 -0.96007 0.555 -0.0563 
120 -0.89131 1.619 24.7308 
130 12.3663 1.318 30.6707 
140 16.19894 1.504 33.46471 
150 15.56229 3.54 34.66817 
160 16.12509 13.999 35.51974 
170 15.519 17.817 36.34316 
180 15.64123 18.372 38.9014 
190 15.67689 21.543 39.65093 
200 16.1531 21.936 43.26131 
210 15.91881 23.185 44.25012 
220 16.06906 26.564 47.2623 
230 15.56738 27.489 47.50158 
240 16.03086 25.916 40.25969 
250 12.35357 24.828 37.73665 
260 11.02934 23.023 37.27919 
270 10.04125 23.232 35.13266 
280 9.68473 23.324 36.33261 
290 9.55485 23.255 37.53607 
300 9.00733 23.232 37.34253 
310 7.89192 23.162 35.59012 
320 7.93012 23.07 34.93209 
330 8.06764 23 35.56197 
340 7.49211 23.023 34.51334 
350 7.72639 23.023 35.19248 
360 7.40552 26.726 45.50285 
370 14.66843 32.164 48.6593 
380 20.57655 32.441 48.70153 
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 THF-PI THF-PVAc THF-PI/PVAc 

time (s) Change of  
Relative Resistance (%) 

Change of  
Relative Resistance (%) 

Change of  
Relative Resistance (%) 

390 21.75817 32.696 47.7831 
400 22.16563 32.997 50.04223 
410 22.77172 33.112 50.71082 
420 23.25558 33.228 51.70315 
430 23.41347 33.298 52.34007 
440 24.19273 33.459 54.08896 
450 23.48222 33.436 54.96164 
460 24.34298 33.436 56.01379 
470 25.61373 33.598 58.05475 
480 26.2351 31.469 49.8135 
490 20.75227 31.493 47.31508 
500 17.75491 31.03 44.95038 
510 16.60385 30.636 44.40847 
520 15.2949 30.336 41.77986 
530 15.08353 29.156 41.82208 
540 14.08017 29.109 42.11767 
550 13.58613 29.248 42.44845 
560 13.43333 28.97 41.26258 
570 13.6065 28.762 39.66148 
580 13.29072 28.6 40.57288 
590 12.75848 28.67 37.85981 
600 11.85189 33.344 49.08861 
610 19.62412 36.653 49.98241 
620 26.57635 37.069 51.16124 
630 31.27228 37.833 50.53135 
640 30.51085 38.92 51.24569 
650 30.65855 39.268 50.49265 
660 30.61781 39.707 51.62221 
670 31.22135 39.962 51.97762 
680 31.97005 39.985 52.71659 
690 32.68819 40.101 52.85734 
700 32.3826 40.147 52.62862 
710 33.15677 40.494 52.92068 
720 33.2841 36.63 44.98557 
730 28.04319 35.704 43.71173 
740 24.09086 35.82 42.38863 
750 22.42284 35.403 42.11063 
760 22.4483 35.426 41.29073 
770 22.18855 35.079 40.38989 
780 21.6232 34.755 39.71075 
790 21.10624 34.732 39.61222 
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 THF-PI THF-PVAc THF-PI/PVAc 

time (s) Change of  
Relative Resistance (%) 

Change of  
Relative Resistance (%) 

Change of  
Relative Resistance (%) 

800 19.23958 34.131 39.12661 
810 19.13263 34.038 38.99993 
820 19.33636 33.205 38.73601 
830 19.02312 33.274 38.04631 
840 17.98666 36.583 45.904 
850 19.99847 39.43 45.8653 
860 32.51502 39.615 45.93567 
870 37.64388 39.661 46.85763 
880 39.10818 40.077 47.05468 
890 39.2839 40.887 47.48399 
900 39.83396 41.049 47.21655 
910 40.07334 41.327 47.52622 
920 40.50117 41.466 48.0083 
930 42.15392 41.258 48.37427 
940 42.53336 41.35 48.25815 
950 42.91535 41.466 49.07101 
960 43.90853 40.934 40.94236 
970 42.55883 41.096 39.1055 
980 33.2077 42.114 38.30671 
990 32.32148 38.897 36.50503 

1000 31.36905 38.018 36.58245 
1010 29.40308 37.671 36.12147 
1020 28.5958 37.37 35.23119 
1030 28.10686 36.722 34.93209 
1040 27.12896 36.722 34.97783 
1050 26.35989 36.56 34.75966 
1060 26.41591 36.445 34.5802 
1070 25.80218 36.329 33.9292 
1080 25.7487 36.676 42.95869 
1090 25.76398 38.388 44.64424 
1100 42.44678 40.563 47.85347 
1110 44.71071 40.864 49.06045 
1120 45.24549 40.91 50.2041 
1130 45.04176 41.049 50.61933 
1140 44.94499 41.211 51.1542 
1150 44.73108 41.327 52.2908 
1160 45.14108 41.674 52.19931 
1170 44.84568 41.744 52.72714 
1180 45.06723 42.044 53.91653 
1190 45.33462 42.715 54.27898 
1200 45.76755 42.438 45.02076 
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 THF-PI THF-PVAc THF-PI/PVAc 

time (s) Change of  
Relative Resistance (%) 

Change of  
Relative Resistance (%) 

Change of  
Relative Resistance (%) 

1210 40.47061 38.851 43.13463 
1220 36.19232 38.111 42.1036 
1230 33.06764 37.763 41.28017 
1240 31.36905 37.208 40.43212 
1250 30.60507 37.278 40.10486 
1260 29.82836 37.162 40.04152 
1270 29.01599 37.162 39.77761 
1280 28.75115 37.116 39.68611 
1290 28.33096 37.023 38.88732 
1300 28.04319 37.023 38.37005 
1310 27.38617 36.954 38.07094 
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Appendix D.  Lachenbruch’s Holdout Confusion Matrices 
 
One Feature: 

Training:     
Actual 
Group # of Cases   Predicted   

    V1 V2 V3 
V1 6 5 0 1 
V2 6 1 5 0 
V3 6 0 0 6 

Test (Exposure 1):     
Actual 
Group # of Cases   Predicted   

    V1 V2 V3 
V1 1 0 1 0 
V2 1 1 0 0 
V3 1 0 0 1 

 
Training:     

Actual 
Group # of Cases   Predicted   

    V1 V2 V3 
V1 6 5 0 1 
V2 6 0 6 0 
V3 6 0 0 6 

Test (Exposure 2):     
Actual 
Group # of Cases   Predicted   

    V1 V2 V3 
V1 1 1 0 0 
V2 1 1 0 0 
V3 1 0 0 1 
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Training:     
Actual 
Group # of Cases   Predicted   

    V1 V2 V3 
V1 6 4 1 1 
V2 6 1 5 0 
V3 6 0 1 5 

Test (Exposure 3):     
Actual 
Group # of Cases   Predicted   

    V1 V2 V3 
V1 1 0 1 0 
V2 1 1 0 0 
V3 1 1 0 0 

 
Training:     

Actual 
Group # of Cases   Predicted   

    V1 V2 V3 
V1 6 5 0 1 
V2 6 1 5 0 
V3 6 0 0 6 

Test (Exposure 4):     
Actual 
Group # of Cases   Predicted   

    V1 V2 V3 
V1 1 0 1 0 
V2 1 0 1 0 
V3 1 0 0 1 
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Training:     
Actual 
Group # of Cases   Predicted   

    V1 V2 V3 
V1 6 6 0 0 
V2 6 1 5 0 
V3 6 0 0 6 

Test (Exposure 5):     
Actual 
Group # of Cases   Predicted   

    V1 V2 V3 
V1 1 0 0 1 
V2 1 0 1 0 
V3 1 1 0 0 

 
Training:     

Actual 
Group # of Cases   Predicted   

    V1 V2 V3 
V1 6 5 0 1 
V2 6 1 5 0 
V3 6 0 0 6 

Test (Exposure 6):     
Actual 
Group # of Cases   Predicted   

    V1 V2 V3 
V1 1 1 0 0 
V2 1 0 1 0 
V3 1 0 0 1 
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Training:     
Actual 
Group # of Cases   Predicted   

    V1 V2 V3 
V1 6 4 1 1 
V2 6 1 5 0 
V3 6 1 0 5 

Test (Exposure 7):     
Actual 
Group # of Cases   Predicted   

    V1 V2 V3 
V1 1 0 1 0 
V2 1 1 0 0 
V3 1 0 0 1 

 
Two Features: 

Training:     
Actual 
Group # of Cases   Predicted   

    V1 V2 V3 
V1 6 6 0 0 
V2 6 0 6 0 
V3 6 0 0 6 

Test (Exposure 1):     
Actual 
Group # of Cases   Predicted   

    V1 V2 V3 
V1 1 1 0 0 
V2 1 0 1 0 
V3 1 0 0 1 
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Training:     
Actual 
Group # of Cases   Predicted   

    V1 V2 V3 
V1 6 6 0 0 
V2 6 0 6 0 
V3 6 0 0 6 

Test (Exposure 2):     
Actual 
Group # of Cases   Predicted   

    V1 V2 V3 
V1 1 1 0 0 
V2 1 0 0 1 
V3 1 0 0 1 

 
Training:     

Actual 
Group # of Cases   Predicted   

    V1 V2 V3 
V1 6 6 0 0 
V2 6 0 6 0 
V3 6 0 0 6 

Test (Exposure 3):     
Actual 
Group # of Cases   Predicted   

    V1 V2 V3 
V1 1 1 0 0 
V2 1 0 1 0 
V3 1 0 0 1 
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Training:     
Actual 
Group # of Cases   Predicted   

    V1 V2 V3 
V1 6 6 0 0 
V2 6 0 6 0 
V3 6 0 0 6 

Test (Exposure 4):     
Actual 
Group # of Cases   Predicted   

    V1 V2 V3 
V1 1 0 1 0 
V2 1 0 1 0 
V3 1 0 0 1 

 
Training:     

Actual 
Group # of Cases   Predicted   

    V1 V2 V3 
V1 6 6 0 0 
V2 6 0 6 0 
V3 6 0 0 6 

Test (Exposure 5):     
Actual 
Group # of Cases   Predicted   

    V1 V2 V3 
V1 1 1 0 0 
V2 1 0 1 0 
V3 1 0 0 1 
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Training:     
Actual 
Group # of Cases   Predicted   

    V1 V2 V3 
V1 6 6 0 0 
V2 6 0 6 0 
V3 6 0 0 6 

Test (Exposure 6):     
Actual 
Group # of Cases   Predicted   

    V1 V2 V3 
V1 1 1 0 0 
V2 1 0 1 0 
V3 1 0 0 1 

 
Training:     

Actual 
Group # of Cases   Predicted   

    V1 V2 V3 
V1 6 6 0 0 
V2 6 0 6 0 
V3 6 0 0 6 

Test (Exposure 7):     
Actual 
Group # of Cases   Predicted   

    V1 V2 V3 
V1 1 1 0 0 
V2 1 0 1 0 
V3 1 0 0 1 
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Appendix E.  Predicted vs. Actual Sensor Three Values 
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Ethanol Exposure Three

0

5

10

15

20

25

30

35

40

45

600 610 620 630 640 650 660 670 680 690 700 710

Time (s)

C
ha

ng
e 

in
 R

el
at

iv
e 

R
es

is
ta

nc
e 

(%
)

Act ual

Neural Net

Regression

 
 

Ethanol Exposure Four

0

5

10

15

20

25

30

35

40

45

50

840 850 860 870 880 890 900 910 920 930 940 950

Time (s)

C
ha

ng
e 

in
 R

el
at

iv
e 

R
es

is
ta

nc
e 

(%
)

Act ual

Neural Net

Regression

 



 

 140

Ethanol Exposure Five
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Cyclohexane Exposure Five
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Ethanol Exposure Four
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